These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 10688306)

  • 1. Reentrant arrhythmias and their control in models of mammalian cardiac tissue.
    Biktashev VN; Holden AV
    J Electrocardiol; 1999; 32 Suppl():76-83. PubMed ID: 10688306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of topological charge to determine filament location and dynamics in a numerical model of scroll wave activity.
    Bray MA; Wikswo JP
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1086-93. PubMed ID: 12374332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of M cells and the long QT syndrome in cardiac arrhythmias: simulation studies of reentrant excitations using a detailed electrophysiological model.
    Henry H; Rappel WJ
    Chaos; 2004 Mar; 14(1):172-82. PubMed ID: 15003058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategy for the pursuit of spiral waves in excitable media.
    Kremmydas GP; Bezerianos A; Bountis T
    Stud Health Technol Inform; 1997; 43 Pt B():576-80. PubMed ID: 10179731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two forms of spiral-wave reentry in an ionic model of ischemic ventricular myocardium.
    Xu A; Guevara MR
    Chaos; 1998 Mar; 8(1):157-174. PubMed ID: 12779719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filament behavior in a computational model of ventricular fibrillation in the canine heart.
    Clayton RH; Holden AV
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):28-34. PubMed ID: 14723491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamics of vortex-like reentry wave filaments in three-dimensional computer models.
    Ashihara T; Namba T; Ito M; Kinoshita M; Nakazawa K
    J Electrocardiol; 1999; 32 Suppl():129-38. PubMed ID: 10688316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shock-induced epicardial and endocardial virtual electrodes leading to ventricular fibrillation via reentry, graded responses, and transmural activation.
    Evans FG; Gray RA
    J Cardiovasc Electrophysiol; 2004 Jan; 15(1):79-87. PubMed ID: 15028078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of ventricular fibrillation in the human heart.
    Ten Tusscher KH; Hren R; Panfilov AV
    Circ Res; 2007 Jun; 100(12):e87-101. PubMed ID: 17540975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reentry wave formation in excitable media with stochastically generated inhomogeneities.
    Kuklik P; Zebrowski JJ
    Chaos; 2005 Sep; 15(3):33301. PubMed ID: 16252987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring reentrant arrhythmias with numerical experiments: generic properties and model complexity.
    Starmer CF
    J Cardiovasc Electrophysiol; 2009 Jun; 20(6):685-8. PubMed ID: 19220566
    [No Abstract]   [Full Text] [Related]  

  • 13. Characteristic and critical excitation length scales in 1-D and 2-D simulations of reentrant cardiac arrhythmias using simple two-variable models.
    Chernyak YB; Starobin JM
    Crit Rev Biomed Eng; 1999; 27(3-5):359-414. PubMed ID: 10864284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tissue-specific model of reentry in the right atrial appendage.
    Zhao J; Trew ML; Legrice IJ; Smaill BH; Pullan AJ
    J Cardiovasc Electrophysiol; 2009 Jun; 20(6):675-84. PubMed ID: 19207787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vortex filament dynamics in computational models of ventricular fibrillation in the heart.
    Clayton RH
    Chaos; 2008 Dec; 18(4):043127. PubMed ID: 19123637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of wall stress on the dynamics of ventricular fibrillation: a simulation study using a dynamic mechanoelectric model of ventricular tissue.
    Hirabayashi S; Inagaki M; Hisada T
    J Cardiovasc Electrophysiol; 2008 Jul; 19(7):730-9. PubMed ID: 18284504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turbulence control with local pacing and its implication in cardiac defibrillation.
    Cao Z; Li P; Zhang H; Xie F; Hu G
    Chaos; 2007 Mar; 17(1):015107. PubMed ID: 17411264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The canine virtual ventricular wall: a platform for dissecting pharmacological effects on propagation and arrhythmogenesis.
    Benson AP; Aslanidi OV; Zhang H; Holden AV
    Prog Biophys Mol Biol; 2008; 96(1-3):187-208. PubMed ID: 17915298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between extracellular stimuli and excitation waves in an atrial reentrant loop.
    Johnson CR; Barr RC
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10):1064-74. PubMed ID: 14521659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias.
    Starmer CF; Romashko DN; Reddy RS; Zilberter YI; Starobin J; Grant AO; Krinsky VI
    Circulation; 1995 Aug; 92(3):595-605. PubMed ID: 7634474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.