BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 10688708)

  • 1. Influence of 2,3,5-Triiodobenzoic Acid and 1-N-Naphthylphthalamic Acid on Indoleacetic Acid Transport in Carnation Cuttings: Relationship with Rooting.
    Guerrero JR; Garrido G; Acosta M; Sánchez-Bravo J
    J Plant Growth Regul; 1999 Dec; 18(4):183-190. PubMed ID: 10688708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin and basipetal transport of the IAA responsible for rooting of carnation cuttings.
    Garrido G; Ramón Guerrero J; Angel Cano E; Acosta M; Sánchez-Bravo J
    Physiol Plant; 2002 Feb; 114(2):303-312. PubMed ID: 11903978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1-N-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid : In-vitro binding to particulate cell fractions and action on auxin transport in corn coleoptiles.
    Thomson KS; Hertel R; Müller S; Tavares JE
    Planta; 1973 Dec; 109(4):337-52. PubMed ID: 24474210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of basipetal auxin transport and lateral auxin movement in rooting and growth of etiolated lupin hypocotyls.
    López Nicolás JI; Acosta M; Sánchez-Bravo J
    Physiol Plant; 2004 Jun; 121(2):294-304. PubMed ID: 15153197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polar transport and accumulation of indole-3-acetic acid during root regeneration by Pinus lambertiana embryos.
    Greenwood MS; Goldsmith MH
    Planta; 1970 Dec; 95(4):297-313. PubMed ID: 24497144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in indole-3-acetic acid transport and its relationship with growth in etiolated lupin hypocotyls.
    Nicolás JI; Acosta M; Sánchez-Bravo J
    J Plant Physiol; 2007 Jul; 164(7):851-60. PubMed ID: 16904231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis.
    Rashotte AM; Brady SR; Reed RC; Ante SJ; Muday GK
    Plant Physiol; 2000 Feb; 122(2):481-90. PubMed ID: 10677441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The action of specific inhibitors of auxin transport on uptake of auxin and binding of N-1-naphthylphthalamic acid to a membrane site in maize coleoptiles.
    Sussman MR; Goldsmith MH
    Planta; 1981 May; 152(1):13-8. PubMed ID: 24302312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cations on hormone transport in primary roots of Zea mays.
    Hasenstein KH; Evans ML
    Plant Physiol; 1988; 86(3):890-4. PubMed ID: 11538240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation.
    Ahkami AH; Melzer M; Ghaffari MR; Pollmann S; Ghorbani Javid M; Shahinnia F; Hajirezaei MR; Druege U
    Planta; 2013 Sep; 238(3):499-517. PubMed ID: 23765266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro.
    Niemi K; Vuorinen T; Ernstsen A; Häggman H
    Tree Physiol; 2002 Dec; 22(17):1231-9. PubMed ID: 12464576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparative Study of Carrier Participation in the Transport of 2,3,5-triiodobenzoic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid by Cucurbita pepo L. Hypocotyl Segments.
    Depta H; Rubery PH
    J Plant Physiol; 1984 Aug; 115(5):371-87. PubMed ID: 23194793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxin transport in roots : IX. Movement, export, resorption and loss of radioactivity from IAA by Zea root segments.
    Wilkins MB; Cane AR; McCorquodale I
    Planta; 1972 Dec; 106(4):291-310. PubMed ID: 24477304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adventitious rooting of Chrysanthemum is stimulated by a low red:far-red ratio.
    Christiaens A; Gobin B; Van Huylenbroeck J; Van Labeke MC
    J Plant Physiol; 2019 May; 236():117-123. PubMed ID: 30974405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement of indoleacetic acid in coleoptiles of Avena sativa L. II. Suspension of polarity by total inhibition of the basipetal transport.
    Goldsmith MH
    Plant Physiol; 1966 Jan; 41(1):15-27. PubMed ID: 5904589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of a cDNA clone encoding an auxin influx carrier in carnation cuttings. Expression in different organs and cultivars and its relationship with cold storage.
    Oliveros-Valenzuela Mdel R; Reyes D; Sánchez-Bravo J; Acosta M; Nicolás C
    Plant Physiol Biochem; 2008 Dec; 46(12):1071-6. PubMed ID: 18762430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings.
    Cano A; Sánchez-García AB; Albacete A; González-Bayón R; Justamante MS; Ibáñez S; Acosta M; Pérez-Pérez JM
    Front Plant Sci; 2018; 9():566. PubMed ID: 29755501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative effects of auxin transport inhibitors on rhizogenesis and mycorrhizal establishment of spruce seedlings inoculated with Laccaria bicolor.
    Rincón A; Priha O; Sotta B; Bonnet M; Le Tacon F
    Tree Physiol; 2003 Aug; 23(11):785-91. PubMed ID: 12839732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of auxin homeostasis and response in nitrogen limitation and dark stimulation of adventitious root formation in petunia cuttings.
    Yang H; Klopotek Y; Hajirezaei MR; Zerche S; Franken P; Druege U
    Ann Bot; 2019 Nov; 124(6):1053-1066. PubMed ID: 31181150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PIS1, a negative regulator of the action of auxin transport inhibitors in Arabidopsis thaliana.
    Fujita H; Syono K
    Plant J; 1997 Sep; 12(3):583-95. PubMed ID: 9351244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.