These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 10688708)

  • 21. Auxin transport in intact pea seedlings (Pisum sativum L.): The inhibition of transport by 2,3,5-triiodobenzoic acid.
    Morris DA; Kadir GO; Barry AJ
    Planta; 1973 Jun; 110(2):173-82. PubMed ID: 24474345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polar auxin transport is essential for gall formation by Pantoea agglomerans on Gypsophila.
    Chalupowicz L; Weinthal D; Gaba V; Sessa G; Barash I; Manulis-Sasson S
    Mol Plant Pathol; 2013 Feb; 14(2):185-90. PubMed ID: 23083316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana.
    Fujita H; Syono K
    Plant Cell Physiol; 1996 Dec; 37(8):1094-101. PubMed ID: 9032965
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings.
    Agulló-Antón MÁ; Ferrández-Ayela A; Fernández-García N; Nicolás C; Albacete A; Pérez-Alfocea F; Sánchez-Bravo J; Pérez-Pérez JM; Acosta M
    Physiol Plant; 2014 Mar; 150(3):446-62. PubMed ID: 24117983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Auxin transport: a new synthetic inhibitor.
    Beyer EM
    Plant Physiol; 1972 Sep; 50(3):322-7. PubMed ID: 16658167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis.
    Reed RC; Brady SR; Muday GK
    Plant Physiol; 1998 Dec; 118(4):1369-78. PubMed ID: 9847111
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Auxin transport in roots : VII. Uptake and movement of radioactivity from IAA-(14)C by Zea roots.
    Wilkins MB; Cane AR; McCorquodale I
    Planta; 1972 Jun; 105(2):93-113. PubMed ID: 24477751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction of acropetal (14)C-photosynthate transport and radial growth by indole-3-acetic acid in Pinus sylvestris shoots.
    Little CH; Sundberg B; Ericsson A
    Tree Physiol; 1990 Jun; 6(2):177-89. PubMed ID: 14972949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of auxin and its polar transport inhibitor on the development of somatic embryos in
    Verma SK; Das AK; Gantait S; Gurel S; Gurel E
    3 Biotech; 2018 Feb; 8(2):99. PubMed ID: 29430361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Auxins and Light on Rooting Stem Cuttings of Populus nigra Salix tetrasperma, Ipomea fistulosa and Hibiscus notodus in Relation to Polarity.
    Nanda KK; Purohit AN; Kochhar VK
    Physiol Plant; 1969; 22(6):1113-20. PubMed ID: 20925659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth.
    Rashotte AM; DeLong A; Muday GK
    Plant Cell; 2001 Jul; 13(7):1683-97. PubMed ID: 11449059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development.
    Hakman I; Hallberg H; Palovaara J
    Tree Physiol; 2009 Apr; 29(4):483-96. PubMed ID: 19203973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The rapid non-polar transport of auxin in the phloem of intact Coleus plants.
    Goldsmith MH; Cataldo DA; Karn J; Brenneman T; Trip P
    Planta; 1974 Dec; 116(4):301-17. PubMed ID: 24458255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Basipetally polarised transport of [(3)H]gibberellin A 1 and [ (14)C]gibberellin A 3, and acropetal polarity of [ (14)C]indole-3-acetic acid transport, in stelar tissues of Phaseolus coccineus roots.
    Hartung W; Phillips ID
    Planta; 1974 Dec; 118(4):311-22. PubMed ID: 24442375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Naphthylphthalamic acid and the mechanism of polar auxin transport.
    Teale W; Palme K
    J Exp Bot; 2018 Jan; 69(2):303-312. PubMed ID: 28992080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Auxin transport promotes Arabidopsis lateral root initiation.
    Casimiro I; Marchant A; Bhalerao RP; Beeckman T; Dhooge S; Swarup R; Graham N; Inzé D; Sandberg G; Casero PJ; Bennett M
    Plant Cell; 2001 Apr; 13(4):843-52. PubMed ID: 11283340
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of auxin movement in the gravistimulated leaf-sheath pulvinus of oat (Avena sativa).
    Brock TG; Kapen EH; Ghosheh NS; Kaufman PB
    J Plant Physiol; 1991; 138():57-62. PubMed ID: 11538277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sites of auxin action: regulation of geotropism, growth, and ethylene production by inhibitors of auxin transport.
    Gaither DH
    Plant Physiol; 1975 Sep; 56(3):404-9. PubMed ID: 16659313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applicability of the chemiosmotic polar diffusion theory to the transport of indol-3yl-acetic acid in the intact pea (Pisum sativum L.).
    Johnson CF; Morris DA
    Planta; 1989 May; 178(2):242-8. PubMed ID: 24212754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of the Indole-3-Acetic Acid (IAA) Transport Inhibitors N-1-Naphthylphthalamic Acid and Morphactin on Endogenous IAA Dynamics in Relation to Compression Wood Formation in 1-Year-Old Pinus sylvestris (L.) Shoots.
    Sundberg B; Tuominen H; Little C
    Plant Physiol; 1994 Oct; 106(2):469-476. PubMed ID: 12232343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.