These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10688846)

  • 1. Volume control in sickle cells is facilitated by the novel anion conductance inhibitor NS1652.
    Bennekou P; Pedersen O; Møller A; Christophersen P
    Blood; 2000 Mar; 95(5):1842-8. PubMed ID: 10688846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment with NS3623, a novel Cl-conductance blocker, ameliorates erythrocyte dehydration in transgenic SAD mice: a possible new therapeutic approach for sickle cell disease.
    Bennekou P; de Franceschi L; Pedersen O; Lian L; Asakura T; Evans G; Brugnara C; Christophersen P
    Blood; 2001 Mar; 97(5):1451-7. PubMed ID: 11222393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The feasibility of pharmacological volume control of sickle cells is dependent on the quantization of the transport pathways. A model study.
    Bennekou P
    J Theor Biol; 1999 Jan; 196(1):129-37. PubMed ID: 9892561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal permeability pathways in human red blood cells.
    Ellory JC; Robinson HC; Browning JA; Stewart GW; Gehl KA; Gibson JS
    Blood Cells Mol Dis; 2007; 39(1):1-6. PubMed ID: 17434766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do sickle cells become dehydrated?
    Merciris P; Giraud F
    Hematol J; 2001; 2(3):200-5. PubMed ID: 11920246
    [No Abstract]   [Full Text] [Related]  

  • 6. Hypoxia activates a Ca2+-permeable cation conductance sensitive to carbon monoxide and to GsMTx-4 in human and mouse sickle erythrocytes.
    Vandorpe DH; Xu C; Shmukler BE; Otterbein LE; Trudel M; Sachs F; Gottlieb PA; Brugnara C; Alper SL
    PLoS One; 2010 Jan; 5(1):e8732. PubMed ID: 20090940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume regulation and KCl cotransport in reticulocyte populations of sickle and normal red blood cells.
    Quarmyne MO; Risinger M; Linkugel A; Frazier A; Joiner C
    Blood Cells Mol Dis; 2011 Aug; 47(2):95-9. PubMed ID: 21576026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anion transport in normal erythrocytes, sickle red cells, and ghosts in relation to hemoglobins and magnesium.
    Teti D; Venza I; Crupi M; Busà M; Loddo S; Romano L
    Arch Biochem Biophys; 2002 Jul; 403(2):149-54. PubMed ID: 12139963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single Molecule Studies of the Diffusion of Band 3 in Sickle Cell Erythrocytes.
    Spector J; Kodippili GC; Ritchie K; Low PS
    PLoS One; 2016; 11(9):e0162514. PubMed ID: 27598991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of the antisickling compound GBT1118 on the permeability of red blood cells from patients with sickle cell anemia.
    Al Balushi H; Dufu K; Rees DC; Brewin JN; Hannemann A; Oksenberg D; Lu DC; Gibson JS
    Physiol Rep; 2019 Mar; 7(6):e14027. PubMed ID: 30916477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sickle red cell dehydration: mechanisms and interventions.
    Bookchin RM; Lew VL
    Curr Opin Hematol; 2002 Mar; 9(2):107-10. PubMed ID: 11844992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 1-chloro-2,4-dinitrobenzene on K+ transport in normal and sickle human red blood cells.
    Muzyamba MC; Gibson JS
    J Physiol; 2003 Mar; 547(Pt 3):903-11. PubMed ID: 12576491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sickle cell disease: from membrane pathophysiology to novel therapies for prevention of erythrocyte dehydration.
    Brugnara C
    J Pediatr Hematol Oncol; 2003 Dec; 25(12):927-33. PubMed ID: 14663274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The conductance of red blood cells from sickle cell patients: ion selectivity and inhibitors.
    Ma YL; Rees DC; Gibson JS; Ellory JC
    J Physiol; 2012 May; 590(9):2095-105. PubMed ID: 22411011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease.
    Oksenberg D; Dufu K; Patel MP; Chuang C; Li Z; Xu Q; Silva-Garcia A; Zhou C; Hutchaleelaha A; Patskovska L; Patskovsky Y; Almo SC; Sinha U; Metcalf BW; Archer DR
    Br J Haematol; 2016 Oct; 175(1):141-53. PubMed ID: 27378309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologic and rheologic effects of the antisickling agent ethacrynic acid and its N-butylated derivative on normal and sickle erythrocytes.
    Orringer EP; Blythe DS; Whitney JA; Brockenbrough S; Abraham DJ
    Am J Hematol; 1992 Jan; 39(1):39-44. PubMed ID: 1536139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anion transport in sickle red blood cells.
    Joiner CH; Gunn RB; Fröhlich O
    Pediatr Res; 1990 Dec; 28(6):587-90. PubMed ID: 2284154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive sodium and potassium movements in sickle erythrocytes.
    Berkowitz LR; Orringer EP
    Am J Physiol; 1985 Sep; 249(3 Pt 1):C208-14. PubMed ID: 4037070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substituted benzaldehydes (12C79 and 589C80) that stabilize oxyhaemoglobin also protect sickle cells against calcium-mediated dehydration.
    Stone PC; Nash GB; Stuart J
    Br J Haematol; 1992 Jul; 81(3):419-23. PubMed ID: 1390217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of the endogenous volume-regulated anion channel (VRAC) in HEK293 cells by acidic di-aryl-ureas.
    Hélix N; Strøbaek D; Dahl BH; Christophersen P
    J Membr Biol; 2003 Nov; 196(2):83-94. PubMed ID: 14724745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.