BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 10689055)

  • 1. Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing pathways.
    Clarke S; Bellmann A; Meuli RA; Assal G; Steck AJ
    Neuropsychologia; 2000; 38(6):797-807. PubMed ID: 10689055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sound recognition and localization in man: specialized cortical networks and effects of acute circumscribed lesions.
    Adriani M; Maeder P; Meuli R; Thiran AB; Frischknecht R; Villemure JG; Mayer J; Annoni JM; Bogousslavsky J; Fornari E; Thiran JP; Clarke S
    Exp Brain Res; 2003 Dec; 153(4):591-604. PubMed ID: 14504861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Keeping track of sound objects in space: The contribution of early-stage auditory areas.
    Da Costa S; Clarke S; Crottaz-Herbette S
    Hear Res; 2018 Sep; 366():17-31. PubMed ID: 29643021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct pathways involved in sound recognition and localization: a human fMRI study.
    Maeder PP; Meuli RA; Adriani M; Bellmann A; Fornari E; Thiran JP; Pittet A; Clarke S
    Neuroimage; 2001 Oct; 14(4):802-16. PubMed ID: 11554799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The functional anatomy of recovery from auditory agnosia. A PET study of sound categorization in a neurological patient and normal controls.
    Engelien A; Silbersweig D; Stern E; Huber W; Döring W; Frith C; Frackowiak RS
    Brain; 1995 Dec; 118 ( Pt 6)():1395-409. PubMed ID: 8595472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What and where in human audition: selective deficits following focal hemispheric lesions.
    Clarke S; Bellmann Thiran A; Maeder P; Adriani M; Vernet O; Regli L; Cuisenaire O; Thiran JP
    Exp Brain Res; 2002 Nov; 147(1):8-15. PubMed ID: 12373363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perception of stationary and moving sound following unilateral cortectomy.
    Lewald J; Peters S; Corballis MC; Hausmann M
    Neuropsychologia; 2009 Mar; 47(4):962-71. PubMed ID: 19022269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental sound recognition after unilateral subcortical lesions.
    Tanaka Y; Nakano I; Obayashi T
    Cortex; 2002 Feb; 38(1):69-76. PubMed ID: 11999335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonverbal auditory agnosia with lesion to Wernicke's area.
    Saygin AP; Leech R; Dick F
    Neuropsychologia; 2010 Jan; 48(1):107-13. PubMed ID: 19698727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical versus parallel processing in tactile object recognition: a behavioural-neuroanatomical study of aperceptive tactile agnosia.
    Bohlhalter S; Fretz C; Weder B
    Brain; 2002 Nov; 125(Pt 11):2537-48. PubMed ID: 12390978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct fMRI responses to laughter, speech, and sounds along the human peri-sylvian cortex.
    Meyer M; Zysset S; von Cramon DY; Alter K
    Brain Res Cogn Brain Res; 2005 Jul; 24(2):291-306. PubMed ID: 15993767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of recovery following focal hemispheric lesions: relationship between lasting deficit and damage to specialized networks.
    Rey B; Frischknecht R; Maeder P; Clarke S
    Restor Neurol Neurosci; 2007; 25(3-4):285-94. PubMed ID: 17943006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Dysprosody associated with environmental auditory sound agnosia in right temporal lobe hypoperfusion--a case report].
    Yamamoto T; Kikuchi T; Nagae J; Ogata K; Ogawa M; Kawai M
    Rinsho Shinkeigaku; 2004 Jan; 44(1):28-33. PubMed ID: 15199735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Where sound position influences sound object representations: a 7-T fMRI study.
    van der Zwaag W; Gentile G; Gruetter R; Spierer L; Clarke S
    Neuroimage; 2011 Feb; 54(3):1803-11. PubMed ID: 20965262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex.
    Tiitinen H; Salminen NH; Palomäki KJ; Mäkinen VT; Alku P; May PJ
    Neurosci Lett; 2006 Mar; 396(1):17-22. PubMed ID: 16343772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pure word deafness with auditory object agnosia after bilateral lesion of the superior temporal sulcus.
    Gutschalk A; Uppenkamp S; Riedel B; Bartsch A; Brandt T; Vogt-Schaden M
    Cortex; 2015 Dec; 73():24-35. PubMed ID: 26343343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal auditory processing deficits following right hemisphere infarction. A psychophysical study.
    Griffiths TD; Rees A; Witton C; Cross PM; Shakir RA; Green GG
    Brain; 1997 May; 120 ( Pt 5)():785-94. PubMed ID: 9183249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory spatial deficits following hemispheric lesions: dissociation of explicit and implicit processing.
    Duffour-Nikolov C; Tardif E; Maeder P; Thiran AB; Bloch J; Frischknecht R; Clarke S
    Neuropsychol Rehabil; 2012; 22(5):674-96. PubMed ID: 22672110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory neglect: what and where in auditory space.
    Clarke S; Thiran AB
    Cortex; 2004 Apr; 40(2):291-300. PubMed ID: 15156787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implicit representation of the auditory space: contribution of the left and right hemispheres.
    Tissieres I; Crottaz-Herbette S; Clarke S
    Brain Struct Funct; 2019 May; 224(4):1569-1582. PubMed ID: 30848352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.