These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10689514)

  • 1. Neural bases of time estimation: a PET and ERP study.
    Pouthas V; Maquet P; Garnero L; Ferrandez AM; Renault B
    Electroencephalogr Clin Neurophysiol Suppl; 1999; 50():598-603. PubMed ID: 10689514
    [No Abstract]   [Full Text] [Related]  

  • 2. [Dynamics of cortical evoked activity during human learning to discriminate microintervals of time using feedback].
    Kostandov EA; Genkina OA; Zakharova NN; Ivashchenko OI; Pogrebinskiĭ SA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1985; 35(5):833-41. PubMed ID: 4072399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The categorization of natural scenes: brain attention networks revealed by dense sensor ERPs.
    Codispoti M; Ferrari V; Junghöfer M; Schupp HT
    Neuroimage; 2006 Aug; 32(2):583-91. PubMed ID: 16750397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple positive ERP components in visual discrimination tasks.
    Friedman D; Vaughan H; Erlenmeyer-Kimling L
    Prog Brain Res; 1980; 54():117-22. PubMed ID: 7220906
    [No Abstract]   [Full Text] [Related]  

  • 5. Brain network interactions in auditory, visual and linguistic processing.
    Horwitz B; Braun AR
    Brain Lang; 2004 May; 89(2):377-84. PubMed ID: 15068921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of repetition lag on electrophysiological and haemodynamic correlates of visual object priming.
    Henson RN; Rylands A; Ross E; Vuilleumeir P; Rugg MD
    Neuroimage; 2004 Apr; 21(4):1674-89. PubMed ID: 15050590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ERP topography and human perceptual learning in the peripheral visual field.
    Shoji H; Skrandies W
    Int J Psychophysiol; 2006 Aug; 61(2):179-87. PubMed ID: 16356572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-frequency analysis of target detection reveals an early interface between bottom-up and top-down processes in the gamma-band.
    Busch NA; Schadow J; Fründ I; Herrmann CS
    Neuroimage; 2006 Feb; 29(4):1106-16. PubMed ID: 16246588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A prefrontal ERP involved in decision making during visual duration and size discrimination tasks.
    Gontier E; Le Dantec C; Paul I; Bernard C; Lalonde R; Rebaï M
    Int J Neurosci; 2008 Jan; 118(1):149-62. PubMed ID: 18041612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal characterization of the neural correlates of perceptual decision making in the human brain.
    Philiastides MG; Sajda P
    Cereb Cortex; 2006 Apr; 16(4):509-18. PubMed ID: 16014865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural correlates of false memory disqualification by true recollection of feedback.
    Joerger TM; Mangels JA
    Neuroreport; 2008 Nov; 19(17):1695-8. PubMed ID: 18981819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the functional architecture of person recognition system with event-related potentials in a within- and cross-domain self-priming of faces.
    Jemel B; Pisani M; Rousselle L; Crommelinck M; Bruyer R
    Neuropsychologia; 2005; 43(14):2024-40. PubMed ID: 16243050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MEG in the study of human cortical functions.
    Hari R
    Electroencephalogr Clin Neurophysiol Suppl; 1996; 47():47-54. PubMed ID: 9335968
    [No Abstract]   [Full Text] [Related]  

  • 14. Different time courses of Stroop and Garner effects in perception--an event-related potentials study.
    Boenke LT; Ohl FW; Nikolaev AR; Lachmann T; Leeuwen Cv
    Neuroimage; 2009 May; 45(4):1272-88. PubMed ID: 19349240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive control of event integration: evidence from event-related potentials.
    Akyürek EG; Riddell PM; Toffanin P; Hommel B
    Psychophysiology; 2007 May; 44(3):383-91. PubMed ID: 17371493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The effect of emotionally significant visual stimuli on cortical evoked potentials].
    Kliucharev VA; Nikulin VV; Ponomarev VA
    Fiziol Cheloveka; 2000; 26(1):5-13. PubMed ID: 10752284
    [No Abstract]   [Full Text] [Related]  

  • 17. Object recognition learning differentiates the representations of objects at the ERP component N1.
    Wang G; Suemitsu K
    Clin Neurophysiol; 2007 Feb; 118(2):372-80. PubMed ID: 17141565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural substrates of visual perceptual learning of simple and complex stimuli.
    Song Y; Ding Y; Fan S; Qu Z; Xu L; Lu C; Peng D
    Clin Neurophysiol; 2005 Mar; 116(3):632-9. PubMed ID: 15721077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of verbal reinforcement on evoked cortical activity].
    Kostandov EA; Vazhnova TN; Genkina OA; Zakharova NN; Ivashchenko OI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1984; 34(5):833-40. PubMed ID: 6506861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Event-related potentials to visual, auditory, and bimodal (combined auditory-visual) stimuli.
    Isoğlu-Alkaç U; Kedzior K; Keskindemirci G; Ermutlu N; Karamursel S
    Int J Neurosci; 2007 Feb; 117(2):259-73. PubMed ID: 17365112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.