BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 106901)

  • 1. Metabolism of diethylstilbestrol: identification of a catechol derived from dienestrol.
    Weidenfeld J; Carter P; Reinhold VN; Tanner SB; Engel LL
    Biomed Mass Spectrom; 1978 Oct; 5(10):587-90. PubMed ID: 106901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mass spectra of diethylstilbestrol and related compounds.
    Engel LL; Marshall PJ; Orr JC; Reinhold VN; Carter P
    Biomed Mass Spectrom; 1978 Oct; 5(10):582-6. PubMed ID: 570858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assay of labile estrogen o-quinones, potent carcinogenic molecular species, by high performance liquid chromatography-electrospray ionization tandem mass spectrometry with phenazine derivatization.
    Yamashita K; Masuda A; Hoshino Y; Komatsu S; Numazawa M
    J Steroid Biochem Mol Biol; 2010 Apr; 119(3-5):141-8. PubMed ID: 20188833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of diethylstilbestrol by rat liver: a preliminary report.
    Engel LL; Weidenfield J; Merriam GR
    J Toxicol Environ Health Suppl; 1976; 1():37-44. PubMed ID: 11352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model sclerotization studies. 4. Generation of N-acetylmethionyl catechol adducts during tyrosinase-catalyzed oxidation of catechols in the presence of N-acetylmethionine.
    Sugumaran M; Nelson E
    Arch Insect Biochem Physiol; 1998; 38(1):44-52. PubMed ID: 9589603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of o-diphenols by immobilized mushroom tyrosinase.
    Marín-Zamora ME; Rojas-Melgarejo F; García-Cánovas F; García-Ruiz PA
    J Biotechnol; 2009 Jan; 139(2):163-8. PubMed ID: 19047003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of semiquinone free radicals formed from stilbene catechol estrogens. An ESR spin stabilization and spin trapping study.
    Kalyanaraman B; Sealy RC; Liehr JG
    J Biol Chem; 1989 Jul; 264(19):11014-9. PubMed ID: 2544580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation.
    Krol ES; Bolton JL
    Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A substrate recycling assay for phenolic compounds using tyrosinase and NADH.
    Brown RS; Male KB; Luong JH
    Anal Biochem; 1994 Oct; 222(1):131-9. PubMed ID: 7856838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic aspects of the tyrosinase oxidation of hydroquinone.
    Ramsden CA; Riley PA
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2463-4. PubMed ID: 24767847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH-dependent covalent binding of [3H]paroxetine to human liver microsomes and S-9 fractions: identification of an electrophilic quinone metabolite of paroxetine.
    Zhao SX; Dalvie DK; Kelly JM; Soglia JR; Frederick KS; Smith EB; Obach RS; Kalgutkar AS
    Chem Res Toxicol; 2007 Nov; 20(11):1649-57. PubMed ID: 17907785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol.
    Sugumaran M; Bolton J
    Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The catalytic effect of tyrosinase upon oxidation of 2-hydroxyestradiol in presence of catechol.
    Jacobsohn GM; Jacobsohn MK
    Arch Biochem Biophys; 1984 Jul; 232(1):189-96. PubMed ID: 6430238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergism exerted by 4-methyl catechol, catechol, and their respective quinones on the rate of DL-DOPA oxidation by mushroom tyrosinase.
    Schved F; Kahn V
    Pigment Cell Res; 1992 Feb; 5(1):41-8. PubMed ID: 1631021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.
    Ramsden CA; Riley PA
    Bioorg Med Chem; 2014 Apr; 22(8):2388-95. PubMed ID: 24656803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Reactivities of
    Ito S; Sugumaran M; Wakamatsu K
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32846902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the metabolism and intrinsic reactivity of a novel catechol metabolite.
    Hutzler JM; Melton RJ; Rumsey JM; Thompson DC; Rock DA; Wienkers LC
    Chem Res Toxicol; 2008 May; 21(5):1125-33. PubMed ID: 18407675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemiexcitation in the peroxidative metabolism of diethylstilbestrol. Metabolic products.
    Knudsen Fda S; Cilento G
    Photochem Photobiol; 1992 Feb; 55(2):267-77. PubMed ID: 1542708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of hydroquinone on tyrosinase kinetics.
    Stratford MR; Ramsden CA; Riley PA
    Bioorg Med Chem; 2012 Jul; 20(14):4364-70. PubMed ID: 22698780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of metabolic activation and DNA adduct formation by the human carcinogen diethylstilbestrol: the defining link to natural estrogens.
    Saeed M; Rogan E; Cavalieri E
    Int J Cancer; 2009 Mar; 124(6):1276-84. PubMed ID: 19089919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.