These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 10692017)

  • 1. Differences in genetic structure between two Japanese beech (Fagus crenata Blume) stands.
    Takahashi M; Mukouda M; Koono K
    Heredity (Edinb); 2000 Jan; 84 ( Pt 1)():103-15. PubMed ID: 10692017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in transpiration characteristics of Japanese beech trees, Fagus crenata, in Japan.
    Tateishi M; Kumagai T; Suyama Y; Hiura T
    Tree Physiol; 2010 Jun; 30(6):748-60. PubMed ID: 20392878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic variation of European beech (Fagus sylvatica L.) along an altitudinal transect at Mount Vogelsberg in Hesse, Germany.
    Sander T; König S; Rothe GM; Janssen A; Weisgerber H
    Mol Ecol; 2000 Sep; 9(9):1349-61. PubMed ID: 10972774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiogenetic characteristics of beech stands with different degrees of autochthony.
    Gregorius HR; Kownatzki D
    BMC Ecol; 2005 Dec; 5():8. PubMed ID: 16332257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic variability among beech (Fagus sylvatica L.) populations from the Sudety Mountains, in respect of peroxidase and malate dehydrogenase loci.
    Krzakowa M; Matras J
    J Appl Genet; 2005; 46(3):271-7. PubMed ID: 16110183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allozyme variation of Cyclobalanopsis championii (Fagaceae), a narrowly distributed species in southern Taiwan.
    Cheng YP; Chien CT; Chen HW; Lin TP
    J Hered; 2001; 92(1):65-70. PubMed ID: 11336231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous genetic structure in a Fagus crenata population in an old-growth beech forest revealed by microsatellite markers.
    Asuka Y; Tomaru N; Nisimura N; Tsumura Y; Yamamoto S
    Mol Ecol; 2004 May; 13(5):1241-50. PubMed ID: 15078459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic evaluation of alternative silvicultural systems in coastal montane forests: western hemlock and amabilis fir.
    El-Kassaby YA; Dunsworth BG; Krakowski J
    Theor Appl Genet; 2003 Aug; 107(4):598-610. PubMed ID: 12750773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene flow in European beech (Fagus sylvatica L.).
    Wang KS
    Genetica; 2004 Oct; 122(2):105-13. PubMed ID: 15609570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogeographical structure revealed by chloroplast DNA variation in Japanese beech (Fagus crenata Blume).
    Okaura T; Harada K
    Heredity (Edinb); 2002 Apr; 88(4):322-9. PubMed ID: 11920142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of release cutting effects on increment and growth in Oriental beech (Fagus orientalis Lipsky) stand.
    Yücesan Z; Ozçelik S; Oktan E
    J Environ Biol; 2015 Sep; 36(5):1075-82. PubMed ID: 26521547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil respiration rates and δ13C(CO2) in natural beech forest (Fagus sylvatica L.) in relation to stand structure.
    Cater M; Ogrinc N
    Isotopes Environ Health Stud; 2011 Jun; 47(2):221-37. PubMed ID: 21644135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of Mountain Beech Coppices into High Forest: An Example for Ecological Intensification.
    Mattioli W; Ferrari B; Giuliarelli D; Mancini LD; Portoghesi L; Corona P
    Environ Manage; 2015 Nov; 56(5):1159-69. PubMed ID: 26070895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Half-sib family structure of Fagus crenata saplings in an old-growth beech-dwarf bamboo forest.
    Asuka Y; Tomaru N; Munehara Y; Tani N; Tsumura Y; Yamamoto S
    Mol Ecol; 2005 Jul; 14(8):2565-75. PubMed ID: 15969735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher drought sensitivity of radial growth of European beech in managed than in unmanaged forests.
    Mausolf K; Wilm P; Härdtle W; Jansen K; Schuldt B; Sturm K; von Oheimb G; Hertel D; Leuschner C; Fichtner A
    Sci Total Environ; 2018 Nov; 642():1201-1208. PubMed ID: 30045501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic diversity impacts of forest fires, forest harvesting, and alternative reforestation practices in black spruce (Picea mariana).
    Rajora OP; Pluhar SA
    Theor Appl Genet; 2003 May; 106(7):1203-12. PubMed ID: 12748771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Within-population genetic structure in beech (Fagus sylvatica L.) stands characterized by different disturbance histories: does forest management simplify population substructure?
    Piotti A; Leonardi S; Heuertz M; Buiteveld J; Geburek T; Gerber S; Kramer K; Vettori C; Vendramin GG
    PLoS One; 2013; 8(9):e73391. PubMed ID: 24039930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of interspecies competition on beech (Fagus orientalis Lipsky) trees and some features of stand in mixed broad-leaved forest.
    Abrari Vajari K
    Environ Monit Assess; 2018 Jun; 190(7):377. PubMed ID: 29869096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tree Age Effects on Fine Root Biomass and Morphology over Chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa Stands.
    Jagodzinski AM; Ziółkowski J; Warnkowska A; Prais H
    PLoS One; 2016; 11(2):e0148668. PubMed ID: 26859755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of inbreeding on coastal Douglas fir growth and yield in operational plantations: a model-based approach.
    Wang T; Aitken SN; Woods JH; Polsson K; Magnussen S
    Theor Appl Genet; 2004 Apr; 108(6):1162-71. PubMed ID: 15067403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.