These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 10692131)

  • 1. Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40.
    Wan DS; Rajadhyaksha M; Webb RH
    J Microsc; 2000 Mar; 197(Pt 3):274-84. PubMed ID: 10692131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin.
    Booth MJ; Wilson T
    J Microsc; 2000 Oct; 200(Pt 1):68-74. PubMed ID: 11012830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy.
    Martini N; Bewersdorf J; Hell SW
    J Microsc; 2002 May; 206(Pt 2):146-51. PubMed ID: 12000554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive aberration correction in a confocal microscope.
    Booth MJ; Neil MA; Juskaitis R; Wilson T
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5788-92. PubMed ID: 11959908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confocal microscopy of thick specimens.
    Reihani SN; Oddershede LB
    J Biomed Opt; 2009; 14(3):030513. PubMed ID: 19566294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy.
    Gibson SF; Lanni F
    J Opt Soc Am A; 1992 Jan; 9(1):154-66. PubMed ID: 1738047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilizing confocal microscopy to measure refractive index of articular cartilage.
    Wang K; Wu J; Day RE; Kirk TB
    J Microsc; 2012 Dec; 248(3):281-91. PubMed ID: 23140377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated spherical aberration correction in scanning confocal microscopy.
    Yoo HW; van Royen ME; van Cappellen WA; Houtsmuller AB; Verhaegen M; Schitter G
    Rev Sci Instrum; 2014 Dec; 85(12):123706. PubMed ID: 25554300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional coherent transfer function for reflection confocal microscopy in the presence of refractive-index mismatch.
    Gu M; Day D; Nakamura O; Kawata S
    J Opt Soc Am A Opt Image Sci Vis; 2001 Aug; 18(8):2002-8. PubMed ID: 11488506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The optics of the spherical fish lens.
    Jagger WS
    Vision Res; 1992 Jul; 32(7):1271-84. PubMed ID: 1455702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A procedure to determine the correct thickness of an object with confocal microscopy in case of refractive index mismatch.
    Kuypers LC; Decraemer WF; Dirckx JJ; Timmermans JP
    J Microsc; 2005 Apr; 218(Pt 1):68-78. PubMed ID: 15817065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberration on excitation focal spot caused by oblique interface with refractive indices discontinuous and its correction with pure-phase compensation for laser scanning microscopy.
    Zhu Y; Zhang C; Zhao W; Wang J; Wang K; Bai J
    J Microsc; 2021 Jun; 282(3):239-249. PubMed ID: 33443815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three dimensional live-cell STED microscopy at increased depth using a water immersion objective.
    Heine J; Wurm CA; Keller-Findeisen J; Schönle A; Harke B; Reuss M; Winter FR; Donnert G
    Rev Sci Instrum; 2018 May; 89(5):053701. PubMed ID: 29864829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry.
    Schwertner M; Booth MJ; Neil MA; Wilson T
    J Microsc; 2004 Jan; 213(1):11-9. PubMed ID: 14678508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberration compensation for optical trapping of cells within living mice.
    Zhong MC; Wang ZQ; Li YM
    Appl Opt; 2017 Mar; 56(7):1972-1976. PubMed ID: 28248397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of spherical aberration on multiphoton fluorescence excitation microscopy.
    Young PA; Clendenon SG; Byars JM; Decca RS; Dunn KW
    J Microsc; 2011 May; 242(2):157-65. PubMed ID: 21118240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refractive index of tissue measured with confocal microscopy.
    Dirckx JJ; Kuypers LC; Decraemer WF
    J Biomed Opt; 2005; 10(4):44014. PubMed ID: 16178647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aberration-free optical refocusing in high numerical aperture microscopy.
    Botcherby EJ; Juskaitis R; Booth MJ; Wilson T
    Opt Lett; 2007 Jul; 32(14):2007-9. PubMed ID: 17632625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry.
    Schwertner M; Booth MJ; Wilson T
    J Microsc; 2004 Sep; 215(Pt 3):271-80. PubMed ID: 15312192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy.
    Shaw M; Hall S; Knox S; Stevens R; Paterson C
    Opt Express; 2010 Mar; 18(7):6900-13. PubMed ID: 20389710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.