BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 10692145)

  • 1. Metabolic influences on circadian rhythmicity in Siberian and Syrian hamsters exposed to long photoperiods.
    Challet E; Kolker DE; Turek FW
    J Neuroendocrinol; 2000 Jan; 12(1):69-78. PubMed ID: 10692145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoperiodic control of seasonal body weight cycles in hamsters.
    Bartness TJ; Wade GN
    Neurosci Biobehav Rev; 1985; 9(4):599-612. PubMed ID: 3909016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-day response in Djungarian hamsters of different circadian phenotypes.
    Schöttner K; Schmidt M; Hering A; Schatz J; Weinert D
    Chronobiol Int; 2012 May; 29(4):430-42. PubMed ID: 22515562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twice daily melatonin peaks in Siberian but not Syrian hamsters under 24 h light:dark:light:dark cycles.
    Raiewski EE; Elliott JA; Evans JA; Glickman GL; Gorman MR
    Chronobiol Int; 2012 Nov; 29(9):1206-15. PubMed ID: 23003567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of food deprivation and metabolic fuel utilization on the photoperiodic control of food intake in Siberian hamsters.
    Bartness TJ; Morley JE; Levine AS
    Physiol Behav; 1995 Jan; 57(1):61-8. PubMed ID: 7710560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian rhythms of photorefractory siberian hamsters remain responsive to melatonin.
    Butler MP; Paul MJ; Turner KW; Park JH; Driscoll JR; Kriegsfeld LJ; Zucker I
    J Biol Rhythms; 2008 Apr; 23(2):160-9. PubMed ID: 18375865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of feedback lighting on the circadian rhythm of locomotor activity and the reproductive maturation of the male Djungarian hamster (Phodopus sungorus).
    Ferraro JS
    J Interdiscipl Cycle Res; 1988; 19(1):29-47. PubMed ID: 11539080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation to short photoperiods augments circadian food anticipatory activity in Siberian hamsters.
    Bradley SP; Prendergast BJ
    Horm Behav; 2014 Jun; 66(1):159-68. PubMed ID: 24666779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are the short-photoperiod-induced decreases in serum prolactin responsible for the seasonal changes in energy balance in Syrian and Siberian hamsters?
    Bartness TJ; Wade GN; Goldman BD
    J Exp Zool; 1987 Dec; 244(3):437-54. PubMed ID: 3443832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle.
    Mendoza J; Graff C; Dardente H; Pevet P; Challet E
    J Neurosci; 2005 Feb; 25(6):1514-22. PubMed ID: 15703405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproductive responses to photoperiod persist in olfactory bulbectomized Siberian hamsters (Phodopus sungorus).
    Prendergast BJ; Pyter LM; Galang J; Kay LM
    Behav Brain Res; 2009 Mar; 198(1):159-64. PubMed ID: 19027041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twenty-four-hour profiles of serum leptin in siberian and golden hamsters: photoperiodic and diurnal variations.
    Horton TH; Buxton OM; Losee-Olson S; Turek FW
    Horm Behav; 2000 Jun; 37(4):388-98. PubMed ID: 10860682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dim nocturnal illumination alters coupling of circadian pacemakers in Siberian hamsters, Phodopus sungorus.
    Gorman MR; Elliott JA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Aug; 190(8):631-9. PubMed ID: 15127217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The circadian clock, light/dark cycle and melatonin are differentially involved in the expression of daily and photoperiodic variations in mt(1) melatonin receptors in the Siberian and Syrian hamsters.
    Schuster C; Gauer F; Malan A; Recio J; Pévet P; Masson-Pévet M
    Neuroendocrinology; 2001 Jul; 74(1):55-68. PubMed ID: 11435758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intensive voluntary wheel running may restore circadian activity rhythms and improves the impaired cognitive performance of arrhythmic Djungarian hamsters.
    Weinert D; Schöttner K; Müller L; Wienke A
    Chronobiol Int; 2016; 33(9):1161-1170. PubMed ID: 27459238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase resetting in duper hamsters: specificity to photic zeitgebers and circadian phase.
    Manoogian EN; Leise TL; Bittman EL
    J Biol Rhythms; 2015 Apr; 30(2):129-43. PubMed ID: 25633984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Daily and photoperiodic melatonin binding changes in the suprachiasmatic nuclei, paraventricular thalamic nuclei, and pars tuberalis of the female Siberian hamster (Phodopus sungorus).
    Recio J; Pévet P; Vivien-Roels B; Míguez JM; Masson-Pévet M
    J Biol Rhythms; 1996 Dec; 11(4):325-32. PubMed ID: 8946260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.