BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 10692329)

  • 1. Dynamics at Lys-553 of the acto-myosin interface in the weakly and strongly bound states.
    MacLean JJ; Chrin LR; Berger CL
    Biophys J; 2000 Mar; 78(3):1441-8. PubMed ID: 10692329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of fluorescently labeled actin-bound cross-bridges in actively contracting myofibrils.
    Cooper WC; Chrin LR; Berger CL
    Biophys J; 2000 Mar; 78(3):1449-57. PubMed ID: 10692330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of myosin LYS-553 with the C-terminus and DNase I-binding loop of actin examined by fluorescence resonance energy transfer.
    Yengo CM; Chrin LR; Berger CL
    J Struct Biol; 2000 Sep; 131(3):187-96. PubMed ID: 11052891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin and nucleotide induced conformational changes in the vicinity of Lys553 in myosin subfragment 1.
    Peyser YM; Muhlrad A
    Eur J Biochem; 1999 Jul; 263(2):511-7. PubMed ID: 10406961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quenching of fluorescent nucleotides bound to myosin: a probe of the active-site conformation.
    Franks-Skiba K; Hwang T; Cooke R
    Biochemistry; 1994 Oct; 33(42):12720-8. PubMed ID: 7918498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational dynamics of actin-bound intermediates of the myosin adenosine triphosphatase cycle in myofibrils.
    Berger CL; Thomas DD
    Biophys J; 1994 Jul; 67(1):250-61. PubMed ID: 7918993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a novel, strongly bound acto-S1 complex carrying ADP and phosphate stabilized in the G680V mutant of Dictyostelium myosin II.
    Uyeda TQ; Tokuraku K; Kaseda K; Webb MR; Patterson B
    Biochemistry; 2002 Jul; 41(30):9525-34. PubMed ID: 12135375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate.
    White HD; Belknap B; Webb MR
    Biochemistry; 1997 Sep; 36(39):11828-36. PubMed ID: 9305974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myosin regulatory light chain and nucleotide modulation of actin binding site electric charge.
    Highsmith S
    Biochemistry; 1997 Feb; 36(8):2010-6. PubMed ID: 9047298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray diffraction evidence for the lack of stereospecific protein interactions in highly activated actomyosin complex.
    Iwamoto H; Oiwa K; Suzuki T; Fujisawa T
    J Mol Biol; 2001 Jan; 305(4):863-74. PubMed ID: 11162098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural transition at actin's N-terminus in the actomyosin cross-bridge cycle.
    Hansen JE; Marner J; Pavlov D; Rubenstein PA; Reisler E
    Biochemistry; 2000 Feb; 39(7):1792-9. PubMed ID: 10677229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production and properties of skeletal myosin subfragment 1 selectively labeled with fluorescein at lysine-553 proximal to the strong actin-binding site.
    Bertrand R; Derancourt J; Kassab R
    Biochemistry; 1995 Jul; 34(29):9500-7. PubMed ID: 7626619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural dynamics of actin during active interaction with myosin: different effects of weakly and strongly bound myosin heads.
    Prochniewicz E; Walseth TF; Thomas DD
    Biochemistry; 2004 Aug; 43(33):10642-52. PubMed ID: 15311925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of the role of the N terminus of actin in actomyosin interactions. Comparison with other mutant actins and implications for the cross-bridge cycle.
    Miller CJ; Wong WW; Bobkova E; Rubenstein PA; Reisler E
    Biochemistry; 1996 Dec; 35(51):16557-65. PubMed ID: 8987990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic changes at the actomyosin-subfragment 1 interface during force-generating reactions.
    Highsmith S; Murphy AJ
    Biochemistry; 1992 Jan; 31(2):385-9. PubMed ID: 1731895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation and mobility of actin in different intermediate states of the ATP hydrolysis cycle.
    Khaimina SS; Wrzosek A; Dabrowska R; Borovikov YS
    Biochemistry (Mosc); 2005 Oct; 70(10):1136-9. PubMed ID: 16271030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The accessibility of etheno-nucleotides to collisional quenchers and the nucleotide cleft in G- and F-actin.
    Root DD; Reisler E
    Protein Sci; 1992 Aug; 1(8):1014-22. PubMed ID: 1304380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence characterization of structural transitions at the strong actin binding motif in skeletal myosin affinity labeled at cysteine 540 with novel spectroscopic cysteaminyl mixed disulfides.
    Bertrand R; Derancourt J; Kassab R
    Biochemistry; 2000 Nov; 39(47):14626-37. PubMed ID: 11087419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperativity between the two heads of rabbit skeletal muscle heavy meromyosin in binding to actin.
    Conibear PB; Geeves MA
    Biophys J; 1998 Aug; 75(2):926-37. PubMed ID: 9675193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of inhibition of skeletal muscle actomyosin by N-benzyl-p-toluenesulfonamide.
    Shaw MA; Ostap EM; Goldman YE
    Biochemistry; 2003 May; 42(20):6128-35. PubMed ID: 12755615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.