These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 10692374)

  • 1. Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome.
    Wilson HL; Ou MS; Aldrich HC; Maupin-Furlow J
    J Bacteriol; 2000 Mar; 182(6):1680-92. PubMed ID: 10692374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation.
    Benaroudj N; Zwickl P; Seemüller E; Baumeister W; Goldberg AL
    Mol Cell; 2003 Jan; 11(1):69-78. PubMed ID: 12535522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes.
    Zwickl P; Ng D; Woo KM; Klenk HP; Goldberg AL
    J Biol Chem; 1999 Sep; 274(37):26008-14. PubMed ID: 10473546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Halophilic 20S proteasomes of the archaeon Haloferax volcanii: purification, characterization, and gene sequence analysis.
    Wilson HL; Aldrich HC; Maupin-Furlow J
    J Bacteriol; 1999 Sep; 181(18):5814-24. PubMed ID: 10482525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone.
    Benaroudj N; Goldberg AL
    Nat Cell Biol; 2000 Nov; 2(11):833-9. PubMed ID: 11056539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting various ATP-dependent steps involved in proteasomal degradation.
    Ogura T; Tanaka K
    Mol Cell; 2003 Jan; 11(1):3-5. PubMed ID: 12535513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins.
    Smith DM; Kafri G; Cheng Y; Ng D; Walz T; Goldberg AL
    Mol Cell; 2005 Dec; 20(5):687-98. PubMed ID: 16337593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration that a human 26S proteolytic complex consists of a proteasome and multiple associated protein components and hydrolyzes ATP and ubiquitin-ligated proteins by closely linked mechanisms.
    Kanayama HO; Tamura T; Ugai S; Kagawa S; Tanahashi N; Yoshimura T; Tanaka K; Ichihara A
    Eur J Biochem; 1992 Jun; 206(2):567-78. PubMed ID: 1317798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of temperature and pressure on the proteolytic specificity of the recombinant 20S proteasome from Methanococcus jannaschii.
    Frankenberg RJ; Andersson M; Clark DS
    Extremophiles; 2003 Oct; 7(5):353-60. PubMed ID: 12820035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical denaturation and elevated folding temperatures are required for wild-type activity and stability of recombinant Methanococcus jannaschii 20S proteasome.
    Frankenberg RJ; Hsu TS; Yakota H; Kim R; Clark DS
    Protein Sci; 2001 Sep; 10(9):1887-96. PubMed ID: 11514679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 26S proteasome of the yeast Saccharomyces cerevisiae.
    Fischer M; Hilt W; Richter-Ruoff B; Gonen H; Ciechanover A; Wolf DH
    FEBS Lett; 1994 Nov; 355(1):69-75. PubMed ID: 7957966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea.
    Horwitz AA; Navon A; Groll M; Smith DM; Reis C; Goldberg AL
    J Biol Chem; 2007 Aug; 282(31):22921-9. PubMed ID: 17553803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular structure of 20S and 26S proteasomes.
    Tanahashi N; Tsurumi C; Tamura T; Tanaka K
    Enzyme Protein; 1993; 47(4-6):241-51. PubMed ID: 7697123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteasomes in the archaea: from structure to function.
    Maupin-Furlow JA; Wilson HL; Kaczowka SJ; Ou MS
    Front Biosci; 2000 Sep; 5():D837-65. PubMed ID: 10966872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotidase activities of the 26 S proteasome and its regulatory complex.
    Hoffman L; Rechsteiner M
    J Biol Chem; 1996 Dec; 271(51):32538-45. PubMed ID: 8955078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Archaeal proteasomes: potential in metabolic engineering.
    Maupin-Furlow JA; Kaczowka SJ; Reuter CJ; Zuobi-Hasona K; Gil MA
    Metab Eng; 2003 Jul; 5(3):151-63. PubMed ID: 12948749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteasomes and their associated ATPases: a destructive combination.
    Smith DM; Benaroudj N; Goldberg A
    J Struct Biol; 2006 Oct; 156(1):72-83. PubMed ID: 16919475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of the 26S proteasome complex catalyzing ATP-dependent breakdown of ubiquitin-ligated proteins from rat liver.
    Ugai S; Tamura T; Tanahashi N; Takai S; Komi N; Chung CH; Tanaka K; Ichihara A
    J Biochem; 1993 Jun; 113(6):754-68. PubMed ID: 8396572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and properties of the 26S protease complex from chick skeletal muscle.
    Lee DH; Kim SS; Kim KI; Ahn JY; Shim KS; Nishigai M; Ikai A; Tamura T; Tanaka K; Ichihara A
    Biochem Mol Biol Int; 1993 May; 30(1):121-30. PubMed ID: 8358324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes.
    Benaroudj N; Tarcsa E; Cascio P; Goldberg AL
    Biochimie; 2001; 83(3-4):311-8. PubMed ID: 11295491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.