BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 10692588)

  • 1. Radiation inactivation analysis of H(+)-pyrophosphatase from submitochondrial particles of etiolated mung bean seedlings.
    Jiang SS; Yang SJ; Kuo SY; Pan RL
    FEBS Lett; 2000 Feb; 468(2-3):211-4. PubMed ID: 10692588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunit structure of vacuolar proton-pyrophosphatase as determined by radiation inactivation.
    Tzeng CM; Yang CY; Yang SJ; Jiang SS; Kuo SY; Hung SH; Ma JT; Pan RL
    Biochem J; 1996 May; 316 ( Pt 1)(Pt 1):143-7. PubMed ID: 8645197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of tyrosine residue in the inhibition of plant vacuolar H(+)-pyrophosphatase by tetranitromethane.
    Yang SJ; Jiang SS; Tzeng CM; Kuo SY; Hung SH; Pan RL
    Biochim Biophys Acta; 1996 May; 1294(1):89-97. PubMed ID: 8639720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean.
    Maeshima M; Yoshida S
    J Biol Chem; 1989 Nov; 264(33):20068-73. PubMed ID: 2555340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional size analysis of pyrophosphatase from Rhodospirillum rubrum determined by radiation inactivation.
    Wu JJ; Ma JT; Pan RL
    FEBS Lett; 1991 May; 283(1):57-60. PubMed ID: 1645297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligomeric structure of H(+)-translocating inorganic pyrophosphatase of plant vacuoles.
    Maeshima M
    Biochem Biophys Res Commun; 1990 May; 168(3):1157-62. PubMed ID: 2161215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of a carboxylic residue possibly involved in the inhibition of vacuolar H+-pyrophosphatase by N, N'-dicyclohexylcarbodi-imide.
    Yang SJ; Jiang SS; Kuo SY; Hung SH; Tam MF; Pan RL
    Biochem J; 1999 Sep; 342 Pt 3(Pt 3):641-6. PubMed ID: 10477275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton pumping inorganic pyrophosphatase of endoplasmic reticulum-enriched vesicles from etiolated mung bean seedlings.
    Kuo SY; Chien LF; Hsiao YY; Van Ru C; Yan KH; Liu PF; Mao SJ; Pan RL
    J Plant Physiol; 2005 Feb; 162(2):129-38. PubMed ID: 15779823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning of vacuolar H(+)-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean.
    Nakanishi Y; Maeshima M
    Plant Physiol; 1998 Feb; 116(2):589-97. PubMed ID: 9489011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the substrate binding site and carboxyl terminal region of vacuolar H+-pyrophosphatase of mung bean with peptide antibodies.
    Takasu A; Nakanishi Y; Yamauchi T; Maeshima M
    J Biochem; 1997 Oct; 122(4):883-9. PubMed ID: 9399596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation-inactivation analysis of vacuolar H(+)-ATPase and H(+)-pyrophosphatase from Beta vulgaris L. Functional sizes for substrate hydrolysis and for H+ transport.
    Sarafian V; Potier M; Poole RJ
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):493-7. PubMed ID: 1315516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport.
    Kim EJ; Zhen RG; Rea PA
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):6128-32. PubMed ID: 8016125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and properties of a nucleotide pyrophosphatase from lentil seedlings.
    Medda R; Padiglia A; Lorrai A; Murgia B; Agrò AF; Castagnola M; Floris G
    J Protein Chem; 2000 Apr; 19(3):209-14. PubMed ID: 10981813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subunit interaction of vacuolar H+-pyrophosphatase as determined by high hydrostatic pressure.
    Yang SJ; Ko SJ; Tsai YR; Jiang SS; Kuo SY; Hung SH; Pan RL
    Biochem J; 1998 Apr; 331 ( Pt 2)(Pt 2):395-402. PubMed ID: 9531476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of NADH dehydrogenases from plant [mung bean (Phaseolus aureus)] mitochondrial membranes on non-denaturing polyacrylamide gels and purification of complex I by band excision.
    Cottingham IR; Moore AL
    Biochem J; 1988 Aug; 254(1):303-5. PubMed ID: 3178753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Submitochondrial localization and function of alkaline inorganic pyrophosphatase in maize seedlings.
    Masłowski P; Kowalczyk S; Kazubska E
    Acta Biochim Pol; 1978; 25(2):175-83. PubMed ID: 153079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of two ferredoxin-NADP+ oxidoreductase isoforms from the first foliage leaves of mung bean (Vigna radiata) seedlings.
    Jin T; Morigasaki S; Wada K
    Plant Physiol; 1994 Oct; 106(2):697-702. PubMed ID: 7991687
    [No Abstract]   [Full Text] [Related]  

  • 18. Localization of cytosolically oriented maleimide-reactive domain of vacuolar H(+)-pyrophosphatase.
    Zhen RG; Kim EJ; Rea PA
    J Biol Chem; 1994 Sep; 269(37):23342-50. PubMed ID: 8083239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and reconstitution of membrane-bound pyrophosphatase from beef heart mitochondria.
    Kulaev IS; Mansurova SE; Shakhov YuA
    Methods Enzymol; 1986; 126():447-54. PubMed ID: 2856138
    [No Abstract]   [Full Text] [Related]  

  • 20. Immunological cross-reactivity between proton-pumping inorganic pyrophosphatases of widely phylogenic separated species.
    Nore BF; Sakai-Nore Y; Maeshima M; Baltscheffsky M; Nyrén P
    Biochem Biophys Res Commun; 1991 Dec; 181(3):962-7. PubMed ID: 1662506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.