These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1069272)

  • 41. Properties of analogues of an intermediate in the process of mechanism-based inactivation of carboxypeptidase A.
    Ghosh SS; Dakoji S; Tanaka Y; Cho YJ; Mobashery S
    Bioorg Med Chem; 1996 Sep; 4(9):1487-92. PubMed ID: 8894106
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Active-site-serine D-alanyl-D-alanine-cleaving-peptidase-catalysed acyl-transfer reactions. Procedures for studying the penicillin-binding proteins of bacterial plasma membranes.
    Ghuysen JM; Frère JM; Leyh-Bouille M; Nguyen-Distèche M; Coyette J
    Biochem J; 1986 Apr; 235(1):159-65. PubMed ID: 3741376
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrolysis of peptides by carboxypeptidase A: equilibrium trapping of the ES2 intermediate.
    Geoghegan KF; Galdes A; Hanson G; Holmquist B; Auld DS; Vallee BL
    Biochemistry; 1986 Aug; 25(16):4669-74. PubMed ID: 3021197
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trapping the acyl-enzyme intermediate in beta-lactamase I catalysis.
    Cartwright SJ; Tan AK; Fink AL
    Biochem J; 1989 Nov; 263(3):905-12. PubMed ID: 2512916
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetic studies of rat kidney gamma-glutamyltranspeptidase deacylation reveal a general base-catalyzed mechanism.
    Castonguay R; Lherbet C; Keillor JW
    Biochemistry; 2003 Oct; 42(39):11504-13. PubMed ID: 14516202
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Binding of ligands to the active site of carboxypeptidase A.
    Rees DC; Lipscomb WN
    Proc Natl Acad Sci U S A; 1981 Sep; 78(9):5455-9. PubMed ID: 6946483
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of protein conformational mobility in enzyme catalysis: acylation of alpha-chymotrypsin by specific peptide substrates.
    Hengge AC; Stein RL
    Biochemistry; 2004 Jan; 43(3):742-7. PubMed ID: 14730979
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic studies of wheat carboxypeptidase-catalyzed reaction: differences in pressure and temperature dependence of peptidase and esterase activities.
    Fukuda M; Kunugi S
    J Biochem; 1987 Jan; 101(1):233-40. PubMed ID: 3553174
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diverse role of conformational dynamics in carboxypeptidase A-driven peptide and ester hydrolyses: disclosing the "perfect induced fit" and "protein local unfolding" pathways by altering protein stability.
    Shushanyan M; Khoshtariya DE; Tretyakova T; Makharadze M; van Eldik R
    Biopolymers; 2011 Dec; 95(12):852-70. PubMed ID: 21698595
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetic studies of carboxypeptidase Y. I. Kinetic parameters for the hydrolysis of synthetic substrates.
    Hayashi R; Bai Y; Hata T
    J Biochem; 1975 Jan; 77(1?):69-79. PubMed ID: 237004
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Enzyme intermediates with the C-terminal products of substrate hydrolysis by carboxypeptidase A and chymotrypsin. Use of the free energy linearity principle].
    Kozlov LV
    Biokhimiia; 1980 Aug; 45(8):1442-7. PubMed ID: 7236796
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The amino-acid substituents of dipeptide substrates of cathepsin C can determine the rate-limiting steps of catalysis.
    Rubach JK; Cui G; Schneck JL; Taylor AN; Zhao B; Smallwood A; Nevins N; Wisnoski D; Thrall SH; Meek TD
    Biochemistry; 2012 Sep; 51(38):7551-68. PubMed ID: 22928782
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elucidation of the chemical nature of the steady-state intermediates in the mechanism of carboxypeptidase A.
    Galdes A; Auld DS; Vallee BL
    Biochemistry; 1986 Feb; 25(3):646-51. PubMed ID: 3955020
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rate-determining step of butyrylcholinesterase-catalyzed hydrolysis of benzoylcholine and benzoylthiocholine. Volumetric study of wild-type and D70G mutant behavior.
    Masson P; Bec N; Froment MT; Nachon F; Balny C; Lockridge O; Schopfer LM
    Eur J Biochem; 2004 May; 271(10):1980-90. PubMed ID: 15128307
    [TBL] [Abstract][Full Text] [Related]  

  • 55. pPH dependence and competitive product inhibition of the carboxypeptidase A catalyzed hydrolysis of O-(trans-cinnamoyl)-L-beta-phenyllactate.
    Hall PL; Kaiser BL; Kaiser ET
    J Am Chem Soc; 1969 Jan; 91(2):485-91. PubMed ID: 5782503
    [No Abstract]   [Full Text] [Related]  

  • 56. Streptomyces K15 DD-peptidase-catalysed reactions with ester and amide carbonyl donors.
    Nguyen-Distèche M; Leyh-Bouille M; Pirlot S; Frère JM; Ghuysen JM
    Biochem J; 1986 Apr; 235(1):167-76. PubMed ID: 2874789
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient catalysis by beta-lactamase from Staphylococcus aureus PC1 accompanied by accumulation of an acyl-enzyme.
    Qi X; Virden R
    Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):537-41. PubMed ID: 8615826
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features.
    Liljeblad A; Kallio P; Vainio M; Niemi J; Kanerva LT
    Org Biomol Chem; 2010 Feb; 8(4):886-95. PubMed ID: 20135048
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Viscosity-dependent structural fluctuations in enzyme catalysis.
    Gavish B; Werber MM
    Biochemistry; 1979 Apr; 18(7):1269-75. PubMed ID: 427112
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism of penicillin action: penicillin and substrate bind covalently to the same active site serine in two bacterial D-alanine carboxypeptidases.
    Yocum RR; Waxman DJ; Rasmussen JR; Strominger JL
    Proc Natl Acad Sci U S A; 1979 Jun; 76(6):2730-4. PubMed ID: 111240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.