BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 10692782)

  • 1. Development and regenerative capacity of descending supraspinal pathways in tetrapods: a comparative approach.
    ten Donkelaar HJ
    Adv Anat Embryol Cell Biol; 2000; 154():iii-ix, 1-145. PubMed ID: 10692782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs.
    Sánchez-Camacho C; Martín O; Ten Donkelaar HJ; González A
    J Comp Neurol; 2002 Apr; 446(1):11-24. PubMed ID: 11920716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observations on the development of descending pathways from the brain stem to the spinal cord in the clawed toad Xenopus laevis.
    ten Donkelaar HJ; de Boer-van Huizen R
    Anat Embryol (Berl); 1982; 163(4):461-73. PubMed ID: 7091712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man.
    Nathan PW; Smith M; Deacon P
    Brain; 1996 Dec; 119 ( Pt 6)():1809-33. PubMed ID: 9009990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early development of descending pathways from the brain stem to the spinal cord in Xenopus laevis.
    van Mier P; ten Donkelaar HJ
    Anat Embryol (Berl); 1984; 170(3):295-306. PubMed ID: 6335361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of motor systems: a comparative approach.
    ten Donkelaar HJ
    Eur J Morphol; 1992; 30(1):9-22. PubMed ID: 1642956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fasciculus longitudinalis medialis in the lizard Varanus exanthematicus. 1. Interstitiospinal, reticulospinal and vestibulospinal components.
    ten Donkelaar HJ; de Boer-van Huizen R
    Anat Embryol (Berl); 1984; 169(2):177-84. PubMed ID: 6547576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin.
    Sánchez-Camacho C; Marín O; Ten Donkelaar HJ; González A
    J Comp Neurol; 2001 May; 434(2):186-208. PubMed ID: 11331524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early development of descending supraspinal pathways: a tracing study in fixed and isolated rat embryos.
    de Boer-van Huizen RT; ten Donkelaar JH
    Anat Embryol (Berl); 1999 Jun; 199(6):539-47. PubMed ID: 10350134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of specificity in corticospinal connections by axon collaterals branching selectively into appropriate spinal targets.
    Kuang RZ; Kalil K
    J Comp Neurol; 1994 Jun; 344(2):270-82. PubMed ID: 8077461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axonal projections and synaptogenesis by supraspinal descending neurons in the spinal cord of the chick embryo.
    Shiga T; Künzi R; Oppenheim RW
    J Comp Neurol; 1991 Mar; 305(1):83-95. PubMed ID: 1709651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Descending pathways from the brain stem to the spinal cord in some reptiles. II. Course and site of termination.
    Ten Donkelaar HJ
    J Comp Neurol; 1976 Jun; 167(4):443-63. PubMed ID: 1270629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional recovery and regeneration of descending tracts in rats after spinal cord transection in infancy.
    Wakabayashi Y; Komori H; Kawa-Uchi T; Mochida K; Takahashi M; Qi M; Otake K; Shinomiya K
    Spine (Phila Pa 1976); 2001 Jun; 26(11):1215-22. PubMed ID: 11389386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collateralization of descending pathways from the brainstem to the spinal cord in a lizard, Varanus exanthematicus.
    Wolters JG; de Boer-van Huizen R; ten Donkelaar HJ; Leenen L
    J Comp Neurol; 1986 Sep; 251(3):317-33. PubMed ID: 3021824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits.
    Jiang YQ; Zaaimi B; Martin JH
    J Neurosci; 2016 Jan; 36(1):193-203. PubMed ID: 26740661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development of descending projections from the brainstem to the spinal cord in the fetal sheep.
    Stockx EM; Anderson CR; Murphy SM; Cooke IR; Berger PJ
    BMC Neurosci; 2007 Jun; 8():40. PubMed ID: 17577416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The pyramidal tract. Recent anatomic and physiologic findings].
    Armand J
    Rev Neurol (Paris); 1984; 140(5):309-29. PubMed ID: 6379818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes within maturing neurons limit axonal regeneration in the developing spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Mar; 66(4):348-60. PubMed ID: 16408302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Descending projections of Forel's field H neurones to the brain stem and the upper cervical spinal cord in the cat.
    Isa T; Sasaki S
    Exp Brain Res; 1992; 88(3):563-79. PubMed ID: 1375165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reorganization of descending motor tracts in the rat spinal cord.
    Raineteau O; Fouad K; Bareyre FM; Schwab ME
    Eur J Neurosci; 2002 Nov; 16(9):1761-71. PubMed ID: 12431229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.