BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10693140)

  • 1. Role of the binuclear manganese(II) site in xylose isomerase.
    Bogumil R; Kappl R; Hüttermann J
    Met Ions Biol Syst; 2000; 37():365-405. PubMed ID: 10693140
    [No Abstract]   [Full Text] [Related]  

  • 2. Xylose isomerase in substrate and inhibitor michaelis states: atomic resolution studies of a metal-mediated hydride shift.
    Fenn TD; Ringe D; Petsko GA
    Biochemistry; 2004 Jun; 43(21):6464-74. PubMed ID: 15157080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of rhamnose isomerase from Escherichia coli and its relation with xylose isomerase illustrates a change between inter and intra-subunit complementation during evolution.
    Korndörfer IP; Fessner WD; Matthews BW
    J Mol Biol; 2000 Jul; 300(4):917-33. PubMed ID: 10891278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron paramagnetic resonance of D-xylose isomerase: evidence for metal ion movement induced by binding of cyclic substrates and inhibitors.
    Bogumil R; Kappl R; Hüttermann J; Witzel H
    Biochemistry; 1997 Mar; 36(9):2345-52. PubMed ID: 9054539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic investigation of new water soluble Mn(II)(2) and Mg(II)(2) complexes for the substrate binding models of xylose/glucose isomerases.
    Patra A; Bera M
    Carbohydr Res; 2014 Jan; 384():87-98. PubMed ID: 24370943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanism of L-fucose isomerase from Escherichia coli.
    Seemann JE; Schulz GE
    J Mol Biol; 1997 Oct; 273(1):256-68. PubMed ID: 9367760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal Dependence of the Xylose Isomerase from Piromyces sp. E2 Explored by Activity Profiling and Protein Crystallography.
    Lee M; Rozeboom HJ; de Waal PP; de Jong RM; Dudek HM; Janssen DB
    Biochemistry; 2017 Nov; 56(45):5991-6005. PubMed ID: 29045784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the metal-free state of glucose isomerase reveals its minimal open configuration for metal binding.
    Nam KH
    Biochem Biophys Res Commun; 2021 Apr; 547():69-74. PubMed ID: 33610042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic reaction mechanism of Pseudomonas stutzeri L-rhamnose isomerase deduced from X-ray structures.
    Yoshida H; Yamaji M; Ishii T; Izumori K; Kamitori S
    FEBS J; 2010 Feb; 277(4):1045-57. PubMed ID: 20088877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-frequency high-field EPR studies on metal-substituted xylose isomerase.
    Kappl R; Ranguelova K; Koch B; Duboc C; Hüttermann J
    Magn Reson Chem; 2005 Nov; 43 Spec no.():S65-73. PubMed ID: 16235215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal Structure and Biochemical Characterization of Xylose Isomerase from
    Son H; Lee SM; Kim KJ
    J Microbiol Biotechnol; 2018 Apr; 28(4):571-578. PubMed ID: 29385668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural analysis of substrate recognition by glucose isomerase in Mn
    Bae JE; Hwang KY; Nam KH
    Biochem Biophys Res Commun; 2018 Sep; 503(2):770-775. PubMed ID: 29909012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the substrate specificity of xylose isomerase.
    Karimäki J; Parkkinen T; Santa H; Pastinen O; Leisola M; Rouvinen J; Turunen O
    Protein Eng Des Sel; 2004 Dec; 17(12):861-9. PubMed ID: 15713782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of invariant water molecules and water-mediated ionic interactions in D-xylose isomerase from Streptomyces rubiginosus.
    Dhanasekaran V; Velmurugan D; Kanaujia SP; Sekar K
    J Biomol Struct Dyn; 2013 Apr; 31(4):376-84. PubMed ID: 22876874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room-Temperature Structure of Xylitol-Bound Glucose Isomerase by Serial Crystallography: Xylitol Binding in the M1 Site Induces Release of Metal Bound in the M2 Site.
    Nam KH
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33918749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structures of L-rhamnose isomerase from Pseudomonas stutzeri in complexes with L-rhamnose and D-allose provide insights into broad substrate specificity.
    Yoshida H; Yamada M; Ohyama Y; Takada G; Izumori K; Kamitori S
    J Mol Biol; 2007 Feb; 365(5):1505-16. PubMed ID: 17141803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies addressing the importance of charge in the binding of fosmidomycin-like molecules to deoxyxylulosephosphate reductoisomerase.
    Perruchon J; Ortmann R; Altenkämper M; Silber K; Wiesner J; Jomaa H; Klebe G; Schlitzer M
    ChemMedChem; 2008 Aug; 3(8):1232-41. PubMed ID: 18470849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible metal binding of the metallo-beta-lactamase domain: glyoxalase II incorporates iron, manganese, and zinc in vivo.
    Schilling O; Wenzel N; Naylor M; Vogel A; Crowder M; Makaroff C; Meyer-Klaucke W
    Biochemistry; 2003 Oct; 42(40):11777-86. PubMed ID: 14529289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparative study of xylose(glucose) isomerase synthesis in Arthrobacter strains].
    Sapunova LI; Kazakevich IO; Parakhnia EV
    Mikrobiologiia; 2000; 69(5):647-52. PubMed ID: 11314651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using neutron protein crystallography to understand enzyme mechanisms.
    Glusker JP; Carrell HL; Kovalevsky AY; Hanson L; Fisher SZ; Mustyakimov M; Mason S; Forsyth T; Langan P
    Acta Crystallogr D Biol Crystallogr; 2010 Nov; 66(Pt 11):1257-61. PubMed ID: 21041947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.