BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10693292)

  • 1. The phenomenon of salivary protein adsorption onto Streptococcus mitis ATCC 903 cells.
    Tamura M; Hirano Y; Hayashi K
    J Oral Sci; 1999 Dec; 41(4):169-72. PubMed ID: 10693292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of saliva-coated and just-harvested Streptococcus sanguis to saliva-coated hydroxyapatite beads.
    Tamura M; Kuroda K; Ueda Y; Saito N; Hirano Y; Hayashi K
    J Nihon Univ Sch Dent; 1995 Sep; 37(3):170-7. PubMed ID: 7490611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of salivary proteins to the surface of oral streptococcal cells.
    Tamura M; Hara T; Shibuya T; Oguma H; Hirano Y; Hayashi K
    J Nihon Univ Sch Dent; 1994 Dec; 36(4):276-82. PubMed ID: 7869131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of salivary biofilm on the adherence of oral bacteria to bleached and non-bleached restorative material.
    Steinberg D; Mor C; Dogan H; Zacks B; Rotstein I
    Dent Mater; 1999 Jan; 15(1):14-20. PubMed ID: 10483391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salivary proteins promote proteolytic activity in Streptococcus mitis biovar 2 and Streptococcus mutans.
    Kindblom C; Davies JR; Herzberg MC; Svensäter G; Wickström C
    Mol Oral Microbiol; 2012 Oct; 27(5):362-72. PubMed ID: 22958385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active detachment of Streptococcus mutans cells adhered to epon-hydroxylapatite surfaces coated with salivary proteins in vitro.
    Vats N; Lee SF
    Arch Oral Biol; 2000 Apr; 45(4):305-14. PubMed ID: 10708670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of dendrimer-grafted modifications to model silicon surfaces on protein adsorption and bacterial adhesion.
    Eichler M; Katzur V; Scheideler L; Haupt M; Geis-Gerstorfer J; Schmalz G; Ruhl S; Müller R; Rupp F
    Biomaterials; 2011 Dec; 32(35):9168-79. PubMed ID: 21906807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of Streptococcus mutans adherence and dental biofilm formation by surface treatment with phosphorylated polyethylene glycol.
    Shimotoyodome A; Koudate T; Kobayashi H; Nakamura J; Tokimitsu I; Hase T; Inoue T; Matsukubo T; Takaesu Y
    Antimicrob Agents Chemother; 2007 Oct; 51(10):3634-41. PubMed ID: 17646419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statherin and histatin 1 reduce parotid saliva-promoted Streptococcus mutans strain MT8148 adhesion to hydroxyapatite surfaces.
    Shimotoyodome A; Kobayashi H; Tokimitsu I; Matsukubo T; Takaesu Y
    Caries Res; 2006; 40(5):403-11. PubMed ID: 16946609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the adsorption behaviour of saliva and purified salivary proteins at solid/liquid interfaces.
    Lindh L
    Swed Dent J Suppl; 2002; (152):1-57. PubMed ID: 12082970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysozyme and lactoperoxidase inhibit the adherence of Streptococcus mutans NCTC 10449 (serotype c) to saliva-treated hydroxyapatite in vitro.
    Roger V; Tenovuo J; Lenander-Lumikari M; Söderling E; Vilja P
    Caries Res; 1994; 28(6):421-8. PubMed ID: 7850845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental salivary pellicles formed on titanium surfaces mediate adhesion of streptococci.
    Edgerton M; Lo SE; Scannapieco FA
    Int J Oral Maxillofac Implants; 1996; 11(4):443-9. PubMed ID: 8803339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress as a determinant of saliva-mediated adherence and coadherence of oral and nonoral microorganisms.
    Bosch JA; Turkenburg M; Nazmi K; Veerman EC; de Geus EJ; Nieuw Amerongen AV
    Psychosom Med; 2003; 65(4):604-12. PubMed ID: 12883111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calorimetric comparison of the interactions between salivary proteins and Streptococcus mutans with and without antigen I/II.
    Xu CP; van de Belt-Gritter B; Busscher HJ; van der Mei HC; Norde W
    Colloids Surf B Biointerfaces; 2007 Feb; 54(2):193-9. PubMed ID: 17140773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption from saliva to silica and hydroxyapatite surfaces and elution of salivary films by SDS and delmopinol.
    Santos O; Lindh L; Halthur T; Arnebrant T
    Biofouling; 2010 Aug; 26(6):697-710. PubMed ID: 20672200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early formation of Streptococcus sobrinus biofilm on various dental restorative materials.
    Steinberg D; Eyal S
    J Dent; 2002 Jan; 30(1):47-51. PubMed ID: 11741735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secretory IgA adsorption and oral streptococcal adhesion to human enamel and artificial solid substrata with various surface free energies.
    Pratt-Terpstra IH; Mulder J; Weerkamp AH; Feijen J; Busscher HJ
    J Biomater Sci Polym Ed; 1991; 2(4):239-53. PubMed ID: 1772830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of streptococcal glucosyltransferases with alpha-amylase and starch on the surface of saliva-coated hydroxyapatite.
    Vacca-Smith AM; Venkitaraman AR; Quivey RG; Bowen WH
    Arch Oral Biol; 1996 Mar; 41(3):291-8. PubMed ID: 8735015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies concerning the glucosyltransferase of Streptococcus sanguis.
    Vacca Smith AM; Ng-Evans L; Wunder D; Bowen WH
    Caries Res; 2000; 34(4):295-302. PubMed ID: 10867431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cumulative correlations of lysozyme, lactoferrin, peroxidase, S-IgA, amylase, and total protein concentrations with adherence of oral viridans streptococci to microplates coated with human saliva.
    Rudney JD; Hickey KL; Ji Z
    J Dent Res; 1999 Mar; 78(3):759-68. PubMed ID: 10096451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.