These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 10694142)

  • 1. Effect of mathematical modeling on the estimation of critical power.
    Bull AJ; Housh TJ; Johnson GO; Perry SR
    Med Sci Sports Exerc; 2000 Feb; 32(2):526-30. PubMed ID: 10694142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test.
    Bergstrom HC; Housh TJ; Zuniga JM; Traylor DA; Lewis RW; Camic CL; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2014 Mar; 28(3):592-600. PubMed ID: 24566607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological responses at five estimates of critical velocity.
    Bull AJ; Housh TJ; Johnson GO; Rana SR
    Eur J Appl Physiol; 2008 Apr; 102(6):711-20. PubMed ID: 18092175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. V˙O2max may not be reached during exercise to exhaustion above critical power.
    Sawyer BJ; Morton RH; Womack CJ; Gaesser GA
    Med Sci Sports Exerc; 2012 Aug; 44(8):1533-8. PubMed ID: 22330019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical power can be estimated from nonexhaustive tests based on rating of perceived exertion responses.
    Nakamura FY; Okuno NM; Perandini LA; S Caldeira LF; Simões HG; Cardoso JR; Bishop DJ
    J Strength Cond Res; 2008 May; 22(3):937-43. PubMed ID: 18438218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood lactate in trained cyclists during cycle ergometry at critical power.
    Jenkins DG; Quigley BM
    Eur J Appl Physiol Occup Physiol; 1990; 61(3-4):278-83. PubMed ID: 2282914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses during exhaustive exercise at critical power determined from the 3-min all-out test.
    Bergstrom HC; Housh TJ; Zuniga JM; Traylor DA; Lewis RW; Camic CL; Schmidt RJ; Johnson GO
    J Sports Sci; 2013; 31(5):537-45. PubMed ID: 23121405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle metabolic determinants of exercise tolerance following exhaustion: relationship to the "critical power".
    Chidnok W; Fulford J; Bailey SJ; Dimenna FJ; Skiba PF; Vanhatalo A; Jones AM
    J Appl Physiol (1985); 2013 Jul; 115(2):243-50. PubMed ID: 23640601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local critical power is an index of local endurance.
    Le Chevalier JM; Vandewalle H; Thépaut-Mathieu C; Stein JF; Caplan L
    Eur J Appl Physiol; 2000 Jan; 81(1-2):120-7. PubMed ID: 10552276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities.
    Schäfer LU; Hayes M; Dekerle J
    Exp Physiol; 2019 Feb; 104(2):209-219. PubMed ID: 30468691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The critical power function is dependent on the duration of the predictive exercise tests chosen.
    Bishop D; Jenkins DG; Howard A
    Int J Sports Med; 1998 Feb; 19(2):125-9. PubMed ID: 9562222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pacing strategy on work done above critical power during high-intensity exercise.
    Chidnok W; Dimenna FJ; Bailey SJ; Wilkerson DP; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2013 Jul; 45(7):1377-85. PubMed ID: 23377832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A test for determining critical heart rate using the critical power model.
    Mielke M; Housh TJ; Hendrix CR; Zuniga J; Camic CL; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2011 Feb; 25(2):504-10. PubMed ID: 20179651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of prior heavy exercise on the parameters of the power-duration curve for cycle ergometry.
    Miura A; Shiragiku C; Hirotoshi Y; Kitano A; Endo MY; Barstow TJ; Morton RH; Fukuba Y
    Appl Physiol Nutr Metab; 2009 Dec; 34(6):1001-7. PubMed ID: 20029507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development of rating of perceived exertion-based tests of physical working capacity.
    Mielke M; Housh TJ; Malek MH; Beck TW; Schmidt RJ; Johnson GO
    J Strength Cond Res; 2008 Jan; 22(1):293-302. PubMed ID: 18296989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intensity-dependent tolerance to exercise after attaining V(O2) max in humans.
    Coats EM; Rossiter HB; Day JR; Miura A; Fukuba Y; Whipp BJ
    J Appl Physiol (1985); 2003 Aug; 95(2):483-90. PubMed ID: 12665540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The duration of predicting trials influences time to fatigue at critical power.
    Jenkins D; Kretek K; Bishop D
    J Sci Med Sport; 1998 Dec; 1(4):213-8. PubMed ID: 9923729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the relationship between velocity and time to fatigue in rowing.
    Hill DW; Alain C; Kennedy MD
    Med Sci Sports Exerc; 2003 Dec; 35(12):2098-105. PubMed ID: 14652508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical Power in Laboratory and Field Conditions Using Single-visit Maximal Effort Trials.
    Triska C; Tschan H; Tazreiter G; Nimmerichter A
    Int J Sports Med; 2015 Nov; 36(13):1063-8. PubMed ID: 26258826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.