BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 10694260)

  • 1. Extracellular Mg(2+) modulates slow gating transitions and the opening of Drosophila ether-à-Go-Go potassium channels.
    Tang CY; Bezanilla F; Papazian DM
    J Gen Physiol; 2000 Mar; 115(3):319-38. PubMed ID: 10694260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mg(2+) modulates voltage-dependent activation in ether-à-go-go potassium channels by binding between transmembrane segments S2 and S3.
    Silverman WR; Tang CY; Mock AF; Huh KB; Papazian DM
    J Gen Physiol; 2000 Nov; 116(5):663-78. PubMed ID: 11055995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling between charge movement and pore opening in voltage dependent potassium channels.
    Stefani E
    Medicina (B Aires); 1995; 55(5 Pt 2):591-9. PubMed ID: 8842189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical detection of rate-determining ion-modulated conformational changes of the ether-à-go-go K+ channel voltage sensor.
    Bannister JP; Chanda B; Bezanilla F; Papazian DM
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18718-23. PubMed ID: 16339906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer of voltage independence from a rat olfactory channel to the Drosophila ether-à-go-go K+ channel.
    Tang CY; Papazian DM
    J Gen Physiol; 1997 Mar; 109(3):301-11. PubMed ID: 9089438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium currents expressed from Drosophila and mouse eag cDNAs in Xenopus oocytes.
    Robertson GA; Warmke JM; Ganetzky B
    Neuropharmacology; 1996; 35(7):841-50. PubMed ID: 8938715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation.
    Ledwell JL; Aldrich RW
    J Gen Physiol; 1999 Mar; 113(3):389-414. PubMed ID: 10051516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional expression of a rat homologue of the voltage gated either á go-go potassium channel reveals differences in selectivity and activation kinetics between the Drosophila channel and its mammalian counterpart.
    Ludwig J; Terlau H; Wunder F; Brüggemann A; Pardo LA; Marquardt A; Stühmer W; Pongs O
    EMBO J; 1994 Oct; 13(19):4451-8. PubMed ID: 7925287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer of ion binding site from ether-a-go-go to Shaker: Mg2+ binds to resting state to modulate channel opening.
    Lin MC; Abramson J; Papazian DM
    J Gen Physiol; 2010 May; 135(5):415-31. PubMed ID: 20385745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual subunits contribute independently to slow gating of bovine EAG potassium channels.
    Schönherr R; Hehl S; Terlau H; Baumann A; Heinemann SH
    J Biol Chem; 1999 Feb; 274(9):5362-9. PubMed ID: 10026145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of voltage-dependent gating and open-state stability in the S5 segment of Shaker potassium channels.
    Kanevsky M; Aldrich RW
    J Gen Physiol; 1999 Aug; 114(2):215-42. PubMed ID: 10435999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino terminal-dependent gating of the potassium channel rat eag is compensated by a mutation in the S4 segment.
    Terlau H; Heinemann SH; Stühmer W; Pongs O; Ludwig J
    J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):537-43. PubMed ID: 9279806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gating of Shaker K+ channels: I. Ionic and gating currents.
    Stefani E; Toro L; Perozo E; Bezanilla F
    Biophys J; 1994 Apr; 66(4):996-1010. PubMed ID: 8038403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence of gating charge movement and pore gating in HERG activation and deactivation pathways.
    Goodchild SJ; Macdonald LC; Fedida D
    Biophys J; 2015 Mar; 108(6):1435-1447. PubMed ID: 25809256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gating currents associated with intramembrane charge displacement in HERG potassium channels.
    Piper DR; Varghese A; Sanguinetti MC; Tristani-Firouzi M
    Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10534-9. PubMed ID: 12928493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational switch between slow and fast gating modes: allosteric regulation of voltage sensor mobility in the EAG K+ channel.
    Schönherr R; Mannuzzu LM; Isacoff EY; Heinemann SH
    Neuron; 2002 Aug; 35(5):935-49. PubMed ID: 12372287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding site in eag voltage sensor accommodates a variety of ions and is accessible in closed channel.
    Silverman WR; Bannister JP; Papazian DM
    Biophys J; 2004 Nov; 87(5):3110-21. PubMed ID: 15347589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of amino-terminal structures on kinetic transitions between several closed and open states in human erg K+ channels.
    Gómez-Varela D; de la Peña P; García J; Giráldez T; Barros F
    J Membr Biol; 2002 May; 187(2):117-33. PubMed ID: 12029369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation gating of Kv4 potassium channels: molecular interactions involving the inner vestibule of the pore.
    Jerng HH; Shahidullah M; Covarrubias M
    J Gen Physiol; 1999 May; 113(5):641-60. PubMed ID: 10228180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences between ion binding to eag and HERG voltage sensors contribute to differential regulation of activation and deactivation gating.
    Lin MC; Papazian DM
    Channels (Austin); 2007; 1(6):429-37. PubMed ID: 18690045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.