These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 10694406)
1. Formation of novel D-ring and E-ring isoprostane-like compounds (D4/E4-neuroprostanes) in vivo from docosahexaenoic acid. Reich EE; Zackert WE; Brame CJ; Chen Y; Roberts LJ; Hachey DL; Montine TJ; Morrow JD Biochemistry; 2000 Mar; 39(9):2376-83. PubMed ID: 10694406 [TBL] [Abstract][Full Text] [Related]
2. Formation of highly reactive A-ring and J-ring isoprostane-like compounds (A4/J4-neuroprostanes) in vivo from docosahexaenoic acid. Fam SS; Murphey LJ; Terry ES; Zackert WE; Chen Y; Gao L; Pandalai S; Milne GL; Roberts LJ; Porter NA; Montine TJ; Morrow JD J Biol Chem; 2002 Sep; 277(39):36076-84. PubMed ID: 12133837 [TBL] [Abstract][Full Text] [Related]
3. Formation of novel D-ring and E-ring isoprostane-like compounds (D4/E4-neuroprostanes) in vivo from docosahexaenoic acid. Reich EE; Montine TJ; Morrow JD Adv Exp Med Biol; 2002; 507():519-24. PubMed ID: 12664634 [No Abstract] [Full Text] [Related]
4. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. Roberts LJ; Montine TJ; Markesbery WR; Tapper AR; Hardy P; Chemtob S; Dettbarn WD; Morrow JD J Biol Chem; 1998 May; 273(22):13605-12. PubMed ID: 9593698 [TBL] [Abstract][Full Text] [Related]
5. Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay. Musiek ES; Cha JK; Yin H; Zackert WE; Terry ES; Porter NA; Montine TJ; Morrow JD J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Jan; 799(1):95-102. PubMed ID: 14659440 [TBL] [Abstract][Full Text] [Related]
6. The biochemistry of the isoprostane, neuroprostane, and isofuran Pathways of lipid peroxidation. Roberts LJ; Fessel JP; Davies SS Brain Pathol; 2005 Apr; 15(2):143-8. PubMed ID: 15912887 [TBL] [Abstract][Full Text] [Related]
7. The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Roberts LJ; Fessel JP Chem Phys Lipids; 2004 Mar; 128(1-2):173-86. PubMed ID: 15037162 [TBL] [Abstract][Full Text] [Related]
8. Regiochemistry of neuroprostanes generated from the peroxidation of docosahexaenoic acid in vitro and in vivo. Yin H; Musiek ES; Gao L; Porter NA; Morrow JD J Biol Chem; 2005 Jul; 280(28):26600-11. PubMed ID: 15894799 [TBL] [Abstract][Full Text] [Related]
9. Formation of highly reactive gamma-ketoaldehydes (neuroketals) as products of the neuroprostane pathway. Bernoud-Hubac N; Davies SS; Boutaud O; Montine TJ; Roberts LJ J Biol Chem; 2001 Aug; 276(33):30964-70. PubMed ID: 11413140 [TBL] [Abstract][Full Text] [Related]
10. Products of the isoprostane pathway: unique bioactive compounds and markers of lipid peroxidation. Roberts LJ; Morrow JD Cell Mol Life Sci; 2002 May; 59(5):808-20. PubMed ID: 12088281 [TBL] [Abstract][Full Text] [Related]
11. Measurement of products of docosahexaenoic acid peroxidation, neuroprostanes, and neurofurans. Arneson KO; Roberts LJ Methods Enzymol; 2007; 433():127-43. PubMed ID: 17954232 [TBL] [Abstract][Full Text] [Related]
12. Comparison of formation of D2/E2-isoprostanes and F2-isoprostanes in vitro and in vivo--effects of oxygen tension and glutathione. Morrow JD; Roberts LJ; Daniel VC; Awad JA; Mirochnitchenko O; Swift LL; Burk RF Arch Biochem Biophys; 1998 May; 353(1):160-71. PubMed ID: 9578611 [TBL] [Abstract][Full Text] [Related]
13. Age-independent, gray matter-localized, brain-enhanced oxidative stress in male fischer 344 rats: brain levels of F(2)-isoprostanes and F(4)-neuroprostanes. Youssef JA; Birnbaum LS; Swift LL; Morrow JD; Badr MZ Free Radic Biol Med; 2003 Jun; 34(12):1631-5. PubMed ID: 12788483 [TBL] [Abstract][Full Text] [Related]
14. Evidence that the E2-isoprostane, 15-E2t-isoprostane (8-iso-prostaglandin E2) is formed in vivo. Morrow JD; Scruggs J; Chen Y; Zackert WE; Roberts LJ J Lipid Res; 1998 Aug; 39(8):1589-93. PubMed ID: 9717718 [TBL] [Abstract][Full Text] [Related]
15. Antioxidants significantly affect the formation of different classes of isoprostanes and neuroprostanes in rat cerebral synaptosomes. Montine TJ; Montine KS; Reich EE; Terry ES; Porter NA; Morrow JD Biochem Pharmacol; 2003 Feb; 65(4):611-7. PubMed ID: 12566089 [TBL] [Abstract][Full Text] [Related]
16. Isoprostanes: markers and mediators of oxidative stress. Montuschi P; Barnes PJ; Roberts LJ FASEB J; 2004 Dec; 18(15):1791-800. PubMed ID: 15576482 [TBL] [Abstract][Full Text] [Related]
17. Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer's disease. Reich EE; Markesbery WR; Roberts LJ; Swift LL; Morrow JD; Montine TJ Am J Pathol; 2001 Jan; 158(1):293-7. PubMed ID: 11141503 [TBL] [Abstract][Full Text] [Related]
18. Formation of highly reactive cyclopentenone isoprostane compounds (A3/J3-isoprostanes) in vivo from eicosapentaenoic acid. Brooks JD; Milne GL; Yin H; Sanchez SC; Porter NA; Morrow JD J Biol Chem; 2008 May; 283(18):12043-55. PubMed ID: 18263929 [TBL] [Abstract][Full Text] [Related]
19. Neurofurans, novel indices of oxidant stress derived from docosahexaenoic acid. Song WL; Lawson JA; Reilly D; Rokach J; Chang CT; Giasson B; FitzGerald GA J Biol Chem; 2008 Jan; 283(1):6-16. PubMed ID: 17921521 [TBL] [Abstract][Full Text] [Related]
20. Formation of novel isoprostane-like compounds from docosahexaenoic acid. Morrow JD; Tapper AR; Zackert WE; Yang J; Sanchez SC; Montine TJ; Roberts LJ Adv Exp Med Biol; 1999; 469():343-7. PubMed ID: 10667351 [No Abstract] [Full Text] [Related] [Next] [New Search]