These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 10695143)

  • 21. Toward a general mechanism of electron capture dissociation.
    Syrstad EA; Turecek F
    J Am Soc Mass Spectrom; 2005 Feb; 16(2):208-24. PubMed ID: 15694771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metastable atom-activated dissociation mass spectrometry: leucine/isoleucine differentiation and ring cleavage of proline residues.
    Cook SL; Collin OL; Jackson GP
    J Mass Spectrom; 2009 Aug; 44(8):1211-23. PubMed ID: 19466707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast multiple electron capture dissociation in a linear radio frequency quadrupole ion trap.
    Satake H; Hasegawa H; Hirabayashi A; Hashimoto Y; Baba T; Masuda K
    Anal Chem; 2007 Nov; 79(22):8755-61. PubMed ID: 17902701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron capture dissociation of O-glycosylated peptides: radical site-induced fragmentation of glycosidic bonds.
    Mormann M; Paulsen H; Peter-Katalinić J
    Eur J Mass Spectrom (Chichester); 2005; 11(5):497-511. PubMed ID: 16322656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localization of intramolecular monosulfide bridges in lantibiotics determined with electron capture induced dissociation.
    Kleinnijenhuis AJ; Duursma MC; Breukink E; Heeren RM; Heck AJ
    Anal Chem; 2003 Jul; 75(13):3219-25. PubMed ID: 12964772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tandem mass spectrometry of very large molecules: serum albumin sequence information from multiply charged ions formed by electrospray ionization.
    Loo JA; Edmonds CG; Smith RD
    Anal Chem; 1991 Nov; 63(21):2488-99. PubMed ID: 1763807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electron capture dissociation of singly and multiply phosphorylated peptides.
    Stensballe A; Jensen ON; Olsen JV; Haselmann KF; Zubarev RA
    Rapid Commun Mass Spectrom; 2000; 14(19):1793-800. PubMed ID: 11006587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of O-sulfopeptides by negative ion mode tandem mass spectrometry: superior performance of negative ion electron capture dissociation.
    Hersberger KE; Håkansson K
    Anal Chem; 2012 Aug; 84(15):6370-7. PubMed ID: 22770115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and localization of the fatty acid modification in ghrelin by electron capture dissociation.
    Guan Z
    J Am Soc Mass Spectrom; 2002 Dec; 13(12):1443-7. PubMed ID: 12484464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of fixed charge modifications on electron capture dissociation.
    Li X; Cournoyer JJ; Lin C; O'Connor PB
    J Am Soc Mass Spectrom; 2008 Oct; 19(10):1514-26. PubMed ID: 18657441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Negative-ion electron capture dissociation: radical-driven fragmentation of charge-increased gaseous peptide anions.
    Yoo HJ; Wang N; Zhuang S; Song H; Håkansson K
    J Am Chem Soc; 2011 Oct; 133(42):16790-3. PubMed ID: 21942568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transition metal ions: charge carriers that mediate the electron capture dissociation pathways of peptides.
    Chen X; Fung YM; Chan WY; Wong PS; Yeung HS; Chan TW
    J Am Soc Mass Spectrom; 2011 Dec; 22(12):2232-45. PubMed ID: 21952786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A mechanistic study of the electron capture dissociation of oligonucleotides.
    Chan TW; Choy MF; Chan WY; Fung YM
    J Am Soc Mass Spectrom; 2009 Feb; 20(2):213-26. PubMed ID: 18842427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localization of labile posttranslational modifications by electron capture dissociation: the case of gamma-carboxyglutamic acid.
    Kelleher NL; Zubarev RA; Bush K; Furie B; Furie BC; McLafferty FW; Walsh CT
    Anal Chem; 1999 Oct; 71(19):4250-3. PubMed ID: 10517147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fragmentation of positively-charged biological ions activated with a beam of high-energy cations.
    Chingin K; Makarov A; Denisov E; Rebrov O; Zubarev RA
    Anal Chem; 2014 Jan; 86(1):372-9. PubMed ID: 24236851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Top-Down Charge Transfer Dissociation (CTD) of Gas-Phase Insulin: Evidence of a One-Step, Two-Electron Oxidation Mechanism.
    Li P; Kreft I; Jackson GP
    J Am Soc Mass Spectrom; 2018 Feb; 29(2):284-296. PubMed ID: 28786096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The combination of electron capture dissociation and fixed charge derivatization increases sequence coverage for O-glycosylated and O-phosphorylated peptides.
    Chamot-Rooke J; van der Rest G; Dalleu A; Bay S; Lemoine J
    J Am Soc Mass Spectrom; 2007 Aug; 18(8):1405-13. PubMed ID: 17560119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of electron capture efficiency by resonant excitation.
    Mormann M; Peter-Katalinić J
    Rapid Commun Mass Spectrom; 2003; 17(19):2208-14. PubMed ID: 14515319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ion activation in electron capture dissociation to distinguish between N-terminal and C-terminal product ions.
    Tsybin YO; He H; Emmett MR; Hendrickson CL; Marshall AG
    Anal Chem; 2007 Oct; 79(20):7596-602. PubMed ID: 17874851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry.
    Ge Y; Lawhorn BG; ElNaggar M; Strauss E; Park JH; Begley TP; McLafferty FW
    J Am Chem Soc; 2002 Jan; 124(4):672-8. PubMed ID: 11804498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.