These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10696721)

  • 1. Evaluation on speciation and removal efficiencies of mercury from municipal solid waste incinerators in Taiwan.
    Chang MB; Wu HT; Huang CK
    Sci Total Environ; 2000 Feb; 246(2-3):165-73. PubMed ID: 10696721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation on the emission factors and removal efficiencies of heavy metals from MSW incinerators in Taiwan.
    Chang MB; Jen CH; Wu HT; Lin HY
    Waste Manag Res; 2003 Jun; 21(3):218-24. PubMed ID: 12870641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of PCDD/F congener distributions in gas/particulate phases and emissions from two municipal solid waste incinerators in Taiwan.
    Chi KH; Chang MB; Chang-Chien GP; Lin C
    Sci Total Environ; 2005 Jul; 347(1-3):148-62. PubMed ID: 16084975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.
    Takahashi F; Kida A; Shimaoka T
    Sci Total Environ; 2010 Oct; 408(22):5472-7. PubMed ID: 20713298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler.
    Wu C; Cao Y; Dong Z; Cheng C; Li H; Pan W
    J Environ Sci (China); 2010; 22(2):277-82. PubMed ID: 20397418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of polychlorinated naphthalenes (PCNs) emission from municipal waste incinerators in Taiwan: Recommendation on control technology.
    Dat ND; Huang YJ; Chang MB
    Chemosphere; 2020 Aug; 252():126541. PubMed ID: 32217411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of PCDD/F congener distributions in MWI flue gas treated with SCR catalysts.
    Chang MB; Chi KH; Chang-Chien GP
    Chemosphere; 2004 Jun; 55(11):1457-67. PubMed ID: 15099725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partition and size distribution of heavy metals in the flue gas from municipal solid waste incinerators in Taiwan.
    Yuan CS; Lin HY; Wu CH; Liu MH
    Chemosphere; 2005 Mar; 59(1):135-45. PubMed ID: 15698654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes.
    Chou CP; Chiu CH; Chang TC; Hsi HC
    J Air Waste Manag Assoc; 2021 May; 71(5):553-563. PubMed ID: 33284737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of heavy metals on particles with different sizes from municipal solid waste incineration.
    Chang MB; Huang CK; Wu HT; Lin JJ; Chang SH
    J Hazard Mater; 2000 Dec; 79(3):229-39. PubMed ID: 11077161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of PCDD/F congener partition in vapor/solid phases of waste incinerator flue gases.
    Chi KH; Chang MB
    Environ Sci Technol; 2005 Oct; 39(20):8023-31. PubMed ID: 16295870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Memory effect on the dioxin emissions from municipal waste incinerator in Taiwan.
    Chang MB; Lin JJ
    Chemosphere; 2001 Dec; 45(8):1151-7. PubMed ID: 11695628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.
    Zhao S; Duan Y; Chen L; Li Y; Yao T; Liu S; Liu M; Lu J
    Environ Pollut; 2017 Oct; 229():863-870. PubMed ID: 28779897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Destruction of PCDD/Fs by SCR from flue gases of municipal waste incinerator and metal smelting plant.
    Chang MB; Chi KH; Chang SH; Yeh JW
    Chemosphere; 2007 Jan; 66(6):1114-22. PubMed ID: 16860367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals.
    Hsi HC; Lee HH; Hwang JF; Chen W
    J Air Waste Manag Assoc; 2010 May; 60(5):514-22. PubMed ID: 20480850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation and evaluation of elemental mercury concentration increase in flue gas across a wet scrubber.
    Chang JC; Ghorishi SB
    Environ Sci Technol; 2003 Dec; 37(24):5763-6. PubMed ID: 14717192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review: mercury in waste incineration.
    van Veizen D; Langenkamp H; Herb G
    Waste Manag Res; 2002 Dec; 20(6):556-68. PubMed ID: 12549668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Issues related to solution chemistry in mercury sampling impingers.
    Linak WP; Ryan JV; Ghorishi BS; Wendt JO
    J Air Waste Manag Assoc; 2001 May; 51(5):688-98. PubMed ID: 11355456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Flue Gas Mercury Removal in Waste Incinerators by Optimization of Carbon Injection Rate.
    Li G; Wu Q; Wang S; Duan Z; Su H; Zhang L; Li Z; Tang Y; Zhao M; Chen L; Liu K; Zhang Y
    Environ Sci Technol; 2018 Feb; 52(4):1940-1945. PubMed ID: 29338215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.