These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 10696779)
1. In vivo acetylcholinesterase inhibition, metabolism, and toxicokinetics of aldicarb in channel catfish: role of biotransformation in acute toxicity. Perkins EJ; Schlenk D Toxicol Sci; 2000 Feb; 53(2):308-15. PubMed ID: 10696779 [TBL] [Abstract][Full Text] [Related]
2. In vitro sulfoxidation of aldicarb by hepatic microsomes of channel catfish, Ictalurus punctatus. Perkins EJ; el-Alfy A; Schlenk D Toxicol Sci; 1999 Mar; 48(1):67-73. PubMed ID: 10330685 [TBL] [Abstract][Full Text] [Related]
3. Use of aquatic organisms as models to determine the in vivo contribution of flavin-containing monooxygenases in xenobiotic biotransformation. Schlenk D Mol Mar Biol Biotechnol; 1995 Dec; 4(4):323-30. PubMed ID: 8541983 [TBL] [Abstract][Full Text] [Related]
4. Effects of salinity on aldicarb toxicity in juvenile rainbow trout (Oncorhynchus mykiss) and striped bass (Morone saxatilis x chrysops). Wang J; Grisle S; Schlenk D Toxicol Sci; 2001 Dec; 64(2):200-7. PubMed ID: 11719702 [TBL] [Abstract][Full Text] [Related]
5. Kinetic analysis of the in vitro inhibition, aging, and reactivation of brain acetylcholinesterase from rat and channel catfish by paraoxon and chlorpyrifos-oxon. Carr RL; Chambers JE Toxicol Appl Pharmacol; 1996 Aug; 139(2):365-73. PubMed ID: 8806854 [TBL] [Abstract][Full Text] [Related]
6. In vitro kinetics of hepatic albendazole sulfoxidation in channel catfish (Ictalurus punctatus), tilapia (Oreochromis sp.), rainbow trout (Oncorhynchus mykiss) and induction of EROD activity in ABZ-dosed channel catfish. González JF; Shaikh B; Reimschuessel R; Kane AS J Vet Pharmacol Ther; 2009 Oct; 32(5):429-35. PubMed ID: 19754908 [TBL] [Abstract][Full Text] [Related]
7. Potential mechanisms of the enhancement of aldicarb toxicity to Japanese medaka, Oryzias latipes, at high salinity. El-Alfy A; Schlenk D Toxicol Appl Pharmacol; 1998 Sep; 152(1):175-83. PubMed ID: 9772213 [TBL] [Abstract][Full Text] [Related]
8. The distribution, elimination, and in vivo biotransformation of aldicarb in the rainbow trout (Oncorhynchus mykiss). Schlenk D; Erickson DA; Lech JJ; Buhler DR Fundam Appl Toxicol; 1992 Jan; 18(1):131-6. PubMed ID: 1601201 [TBL] [Abstract][Full Text] [Related]
9. Characterization of salinity-enhanced toxicity of aldicarb to Japanese medaka: sexual and developmental differences. El-Alfy AT; Grisle S; Schlenk D Environ Toxicol Chem; 2001 Sep; 20(9):2093-8. PubMed ID: 11521840 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of rainbow trout acetylcholinesterase by aqueous and suspended particle-associated organophosphorous insecticides. Sturm A; Radau TS; Hahn T; Schulz R Chemosphere; 2007 Jun; 68(4):605-12. PubMed ID: 17418885 [TBL] [Abstract][Full Text] [Related]
11. Muscular and brain cholinesterase sensitivities to azinphos methyl and carbaryl in the juvenile rainbow trout Oncorhynchus mykiss. Ferrari A; Venturino A; Pechén de D'Angelo AM Comp Biochem Physiol C Toxicol Pharmacol; 2007 Sep; 146(3):308-13. PubMed ID: 17509940 [TBL] [Abstract][Full Text] [Related]
12. Microsomal biotransformation of chlorpyrifos, parathion and fenthion in rainbow trout (Oncorhynchus mykiss) and coho salmon (Oncorhynchus kisutch): mechanistic insights into interspecific differences in toxicity. Lavado R; Schlenk D Aquat Toxicol; 2011 Jan; 101(1):57-63. PubMed ID: 20947181 [TBL] [Abstract][Full Text] [Related]
13. A physiologically based pharmacokinetic and pharmacodynamic model for paraoxon in rainbow trout. Abbas R; Hayton WL Toxicol Appl Pharmacol; 1997 Jul; 145(1):192-201. PubMed ID: 9221837 [TBL] [Abstract][Full Text] [Related]
14. The oxidative metabolism of aldicarb in pigs: in vivo-in vitro comparison. Montesissa C; Huveneers MB; Hoogenboom LA; Amorena M; De Liguoro M; Lucisano A Drug Metabol Drug Interact; 1994; 11(2):127-38. PubMed ID: 12369596 [TBL] [Abstract][Full Text] [Related]
15. Dermal absorption of three waterborne chloroethanes in rainbow trout (Oncorhynchus mykiss) and channel catfish (Ictalurus punctatus). McKim JM; Nichols JW; Lien GJ; Hoffman AD; Gallinat CA; Stokes GN Fundam Appl Toxicol; 1996 Jun; 31(2):218-28. PubMed ID: 8789788 [TBL] [Abstract][Full Text] [Related]
16. Comparison of aldicarb and methamidophos neurotoxicity at different ages in the rat: behavioral and biochemical parameters. Moser VC Toxicol Appl Pharmacol; 1999 Jun; 157(2):94-106. PubMed ID: 10366542 [TBL] [Abstract][Full Text] [Related]
17. Increasing uptake and bioactivation with development positively modulate diazinon toxicity in early life stage medaka (Oryzias latipes). Hamm JT; Wilson BW; Hinton DE Toxicol Sci; 2001 Jun; 61(2):304-13. PubMed ID: 11353139 [TBL] [Abstract][Full Text] [Related]
18. Rapid loss of lampricide from catfish and rainbow trout following routine treatment. Dawson VK; Schreier TM; Boogaard MA; Spanjers NJ; Gingerich WH J Agric Food Chem; 2002 Nov; 50(23):6780-5. PubMed ID: 12405775 [TBL] [Abstract][Full Text] [Related]
19. Gender differences in the effect of salinity on aldicarb uptake, elimination, and in vitro metabolism in Japanese medaka, Oryzias latipes. El-Alfy AT; Bernache E; Schlenk D Aquat Toxicol; 2002 Dec; 61(3-4):225-32. PubMed ID: 12359392 [TBL] [Abstract][Full Text] [Related]
20. Biochemical mechanisms contributing to species differences in insecticidal toxicity. Chambers JE; Carr RL Toxicology; 1995 Dec; 105(2-3):291-304. PubMed ID: 8571366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]