BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10698577)

  • 1. Feasibility studies of simultaneous multianalyte amperometric immunoassay based on spatial resolution.
    Ding Y; Zhou L; Halsall HB; Heineman WR
    J Pharm Biomed Anal; 1999 Feb; 19(1-2):153-61. PubMed ID: 10698577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical multianalyte immunoassays using an array-based sensor.
    Wilson MS; Nie W
    Anal Chem; 2006 Apr; 78(8):2507-13. PubMed ID: 16615757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the enzyme hydrolysis products of the substrates of alkaline phosphatase in electrochemical immunosensing.
    Preechaworapun A; Dai Z; Xiang Y; Chailapakul O; Wang J
    Talanta; 2008 Jul; 76(2):424-31. PubMed ID: 18585301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation-free sandwich enzyme immunoassays using microporous gold electrodes and self-assembled monolayer/immobilized capture antibodies.
    Duan C; Meyerhoff ME
    Anal Chem; 1994 May; 66(9):1369-77. PubMed ID: 8017631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amperometric detection of alkaline phosphatase activity at a horseradish peroxidase enzyme electrode based on activated carbon: potential application to electrochemical immunoassay.
    Ho WO; Athey D; McNeil CJ
    Biosens Bioelectron; 1995; 10(8):683-91. PubMed ID: 7576436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay.
    Niwa O; Xu Y; Halsall HB; Heineman WR
    Anal Chem; 1993 Jun; 65(11):1559-63. PubMed ID: 8328672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow screen-printed amperometric detection of p-nitrophenol in alkaline phosphatase-based assays.
    Fanjul-Bolado P; González-García MB; Costa-García A
    Anal Bioanal Chem; 2006 Aug; 385(7):1202-8. PubMed ID: 16532307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroquinone diphosphate: an alkaline phosphatase substrate that does not produce electrode fouling in electrochemical immunoassays.
    Wilson MS; Rauh RD
    Biosens Bioelectron; 2004 Sep; 20(2):276-83. PubMed ID: 15308232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amperometric immunosensor for ricin by using on graphite and carbon nanotube paste electrodes.
    Suresh S; Gupta AK; Rao VK; Kumar O; Vijayaraghavan R
    Talanta; 2010 Apr; 81(1-2):703-8. PubMed ID: 20188985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individually addressable electrode array for multianalyte electrochemiluminescent immunoassay based on a sequential triggering strategy.
    Wang L; Wei W; Han J; Fu Z
    Analyst; 2012 Feb; 137(3):735-40. PubMed ID: 22159267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel non-competitive amperometric immunosensor by using thiourea-glutaraldehyde-modified gold electrode for immunoglobulin M detection.
    Akyilmaz E; Dinçkaya E
    Artif Cells Nanomed Biotechnol; 2013 Dec; 41(6):389-94. PubMed ID: 23363437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards the development of a single-step immunosensor based on an electrochemical screen-printed electrode strip coupled with immunomagnetic beads.
    Volpe G; Sozzo U; Piermarini S; Delibato E; Palleschi G; Moscone D
    Anal Bioanal Chem; 2013 Jan; 405(2-3):655-63. PubMed ID: 22736227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immuno-column for on-line quantification of human serum IgG antibodies to Helicobacter pylori in human serum samples.
    Molina L; Messina GA; Stege PW; Salinas E; Raba J
    Talanta; 2008 Sep; 76(5):1077-82. PubMed ID: 18761158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amperometric microcells for alkaline phosphatase assay.
    Gyurcsányi RE; Bereczki A; Nagy G; Neuman MR; Lindner E
    Analyst; 2002 Feb; 127(2):235-40. PubMed ID: 11913867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes.
    Díaz-González M; González-García MB; Costa-García A
    Biosens Bioelectron; 2005 Apr; 20(10):2035-43. PubMed ID: 15741073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical immunoassay for vitellogenin based on sequential injection using antigen-immobilized magnetic microbeads.
    Hirakawa K; Katayama M; Soh N; Nakano K; Imato T
    Anal Sci; 2006 Jan; 22(1):81-6. PubMed ID: 16429778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microchip-based electrochemical enzyme immunoassays.
    Chatrathi MP; Collins GE; Wang J
    Methods Mol Biol; 2007; 385():215-24. PubMed ID: 18365715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction.
    Lai G; Yan F; Wu J; Leng C; Ju H
    Anal Chem; 2011 Apr; 83(7):2726-32. PubMed ID: 21370869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid and sensitive heterogeneous immunoelectrochemical assay using disposable electrodes.
    Hadas E; Soussan L; Rosen-Margalit I; Farkash A; Rishpon J
    J Immunoassay; 1992; 13(2):231-52. PubMed ID: 1430241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disposable immunosensor for cortisol using functionalized magnetic particles.
    Moreno-Guzmán M; Eguílaz M; Campuzano S; González-Cortés A; Yáñez-Sedeño P; Pingarrón JM
    Analyst; 2010 Aug; 135(8):1926-33. PubMed ID: 20577675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.