These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 10698750)
21. Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose. Liu H; Chen Y; Wang S; Liu Y; Zhao W; Huo K; Guo H; Xiong W; Wang S; Yang C; Liu R Int J Biol Macromol; 2023 Dec; 253(Pt 2):126732. PubMed ID: 37678685 [TBL] [Abstract][Full Text] [Related]
22. Production and characterization of medium-chain-length polyhydroxyalkanoate with high 3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Liu W; Chen GQ Appl Microbiol Biotechnol; 2007 Oct; 76(5):1153-9. PubMed ID: 17668200 [TBL] [Abstract][Full Text] [Related]
23. Alternative fate of glyoxylate during acetate and hexadecane metabolism in Acinetobacter oleivorans DR1. Park C; Shin B; Park W Sci Rep; 2019 Oct; 9(1):14402. PubMed ID: 31591464 [TBL] [Abstract][Full Text] [Related]
24. Fed-Batch Borrero-de Acuña JM; Rohde M; Saldias C; Poblete-Castro I Front Bioeng Biotechnol; 2021; 9():642023. PubMed ID: 33796510 [TBL] [Abstract][Full Text] [Related]
25. Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. Huisman GW; Wonink E; Meima R; Kazemier B; Terpstra P; Witholt B J Biol Chem; 1991 Feb; 266(4):2191-8. PubMed ID: 1989978 [TBL] [Abstract][Full Text] [Related]
26. In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Poblete-Castro I; Binger D; Rodrigues A; Becker J; Martins Dos Santos VA; Wittmann C Metab Eng; 2013 Jan; 15():113-23. PubMed ID: 23164576 [TBL] [Abstract][Full Text] [Related]
27. Channelling carbon flux through the meta-cleavage route for improved poly(3-hydroxyalkanoate) production from benzoate and lignin-based aromatics in Pseudomonas putida H. Borrero-de Acuña JM; Gutierrez-Urrutia I; Hidalgo-Dumont C; Aravena-Carrasco C; Orellana-Saez M; Palominos-Gonzalez N; van Duuren JBJH; Wagner V; Gläser L; Becker J; Kohlstedt M; Zacconi FC; Wittmann C; Poblete-Castro I Microb Biotechnol; 2021 Nov; 14(6):2385-2402. PubMed ID: 33171015 [TBL] [Abstract][Full Text] [Related]
28. Transcriptome Changes in Dabrowska D; Mozejko-Ciesielska J; Pokój T; Ciesielski S Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375721 [No Abstract] [Full Text] [Related]
29. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. de Eugenio LI; Escapa IF; Morales V; Dinjaski N; Galán B; García JL; Prieto MA Environ Microbiol; 2010 Jan; 12(1):207-21. PubMed ID: 19788655 [TBL] [Abstract][Full Text] [Related]
30. Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder. van der Walle GA; Buisman GJ; Weusthuis RA; Eggink G Int J Biol Macromol; 1999; 25(1-3):123-8. PubMed ID: 10416658 [TBL] [Abstract][Full Text] [Related]
31. Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. Hoffmann N; Rehm BH FEMS Microbiol Lett; 2004 Aug; 237(1):1-7. PubMed ID: 15268931 [TBL] [Abstract][Full Text] [Related]
32. Effect of inactivation of poly(hydroxyalkanoates) depolymerase gene on the properties of poly(hydroxyalkanoates) in Pseudomonas resinovorans. Solaiman DK; Ashby RD; Foglia TA Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):536-43. PubMed ID: 12759786 [TBL] [Abstract][Full Text] [Related]
33. Overproduction of MCL-PHA with high 3-hydroxydecanoate Content. Gao J; Vo MT; Ramsay JA; Ramsay BA Biotechnol Bioeng; 2018 Feb; 115(2):390-400. PubMed ID: 29030961 [TBL] [Abstract][Full Text] [Related]
34. Genetic and ultrastructural analysis of different mutants of Pseudomonas putida affected in the poly-3-hydroxy-n-alkanoate gene cluster. Sandoval A; Arias-Barrau E; Arcos M; Naharro G; Olivera ER; Luengo JM Environ Microbiol; 2007 Mar; 9(3):737-51. PubMed ID: 17298373 [TBL] [Abstract][Full Text] [Related]
35. A lower specificity PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and medium-chain-length 3-hydroxyalkanoates. Chen JY; Song G; Chen GQ Antonie Van Leeuwenhoek; 2006 Jan; 89(1):157-67. PubMed ID: 16496091 [TBL] [Abstract][Full Text] [Related]
36. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. Le Meur S; Zinn M; Egli T; Thöny-Meyer L; Ren Q BMC Biotechnol; 2012 Aug; 12():53. PubMed ID: 22913372 [TBL] [Abstract][Full Text] [Related]
37. Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440. Yang S; Li S; Jia X J Ind Microbiol Biotechnol; 2019 Jun; 46(6):793-800. PubMed ID: 30864026 [TBL] [Abstract][Full Text] [Related]
38. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Rehm BH; Mitsky TA; Steinbüchel A Appl Environ Microbiol; 2001 Jul; 67(7):3102-9. PubMed ID: 11425728 [TBL] [Abstract][Full Text] [Related]
40. Role of the glyoxylate pathway in acetic acid production by Acetobacter aceti. Sakurai K; Yamazaki S; Ishii M; Igarashi Y; Arai H J Biosci Bioeng; 2013 Jan; 115(1):32-6. PubMed ID: 22902276 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]