These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 10698768)
21. Optimal conditions for bio-oxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans. Malhotra S; Tankhiwale AS; Rajvaidya AS; Pandey RA Bioresour Technol; 2002 Dec; 85(3):225-34. PubMed ID: 12365488 [TBL] [Abstract][Full Text] [Related]
22. Sulfite oxidation by iron-grown cells of Thiobacillus ferrooxidans at pH 3 possibly involves free radicals, iron, and cytochrome oxidase. Harahuc L; Suzuki I Can J Microbiol; 2001 May; 47(5):424-30. PubMed ID: 11400733 [TBL] [Abstract][Full Text] [Related]
23. Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Ramírez P; Guiliani N; Valenzuela L; Beard S; Jerez CA Appl Environ Microbiol; 2004 Aug; 70(8):4491-8. PubMed ID: 15294777 [TBL] [Abstract][Full Text] [Related]
24. Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to arsenite, arsenate, ferrous and ferric iron. Collinet MN; Morin D Antonie Van Leeuwenhoek; 1990 May; 57(4):237-44. PubMed ID: 2191624 [TBL] [Abstract][Full Text] [Related]
25. Mathematical model of the oxidation of ferrous iron by a biofilm of Thiobacillus ferrooxidans. Mesa MM; Macías M; Cantero D Biotechnol Prog; 2002; 18(4):679-85. PubMed ID: 12153298 [TBL] [Abstract][Full Text] [Related]
26. Oxidation of elemental sulfur and sulfur compounds and CO2 fixation by Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Silver M Can J Microbiol; 1970 Sep; 16(9):845-9. PubMed ID: 5506089 [No Abstract] [Full Text] [Related]
27. Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Wakai S; Kikumoto M; Kanao T; Kamimura K Biosci Biotechnol Biochem; 2004 Dec; 68(12):2519-28. PubMed ID: 15618623 [TBL] [Abstract][Full Text] [Related]
28. [Mathematical model of Thiobacillus ferrooxidans growth on a medium with ferrous iron]. Petrova TA; Galaktionova NA; Karavaĭko GI; Krylov IuM; Moshniakova SA Mikrobiologiia; 1979; 48(2):235-9. PubMed ID: 35735 [TBL] [Abstract][Full Text] [Related]
29. Enzymic comparisons of the inorganic sulfur metabolism in autotrophic and heterotrophic Thiobacillus ferrooxidans. Tuovinen PH; Kelley BC; Nicholas DJ Can J Microbiol; 1976 Jan; 22(1):109-13. PubMed ID: 175905 [TBL] [Abstract][Full Text] [Related]
30. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Fowler TA; Holmes PR; Crundwell FK Appl Environ Microbiol; 1999 Jul; 65(7):2987-93. PubMed ID: 10388693 [TBL] [Abstract][Full Text] [Related]
31. Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Drobner E; Huber H; Stetter KO Appl Environ Microbiol; 1990 Sep; 56(9):2922-3. PubMed ID: 2275538 [TBL] [Abstract][Full Text] [Related]
32. Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Brock TD; Gustafson J Appl Environ Microbiol; 1976 Oct; 32(4):567-71. PubMed ID: 825043 [TBL] [Abstract][Full Text] [Related]
33. Role of Thiobacillus ferrooxidans in the oxidation of sulfide minerals. Duncan DW; Landesman J; Walden CC Can J Microbiol; 1967 Apr; 13(4):397-403. PubMed ID: 6034412 [No Abstract] [Full Text] [Related]
34. Heterotrophic bacteria from cultures of autotrophic Thiobacillus ferrooxidans: relationships as studied by means of deoxyribonucleic acid homology. Harrison AP; Jarvis BW; Johnson JL J Bacteriol; 1980 Jul; 143(1):448-54. PubMed ID: 7400100 [TBL] [Abstract][Full Text] [Related]
35. Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans. Meruane G; Salhe C; Wiertz J; Vargas T Biotechnol Bioeng; 2002 Nov; 80(3):280-8. PubMed ID: 12226860 [TBL] [Abstract][Full Text] [Related]
36. Immobilisation of Thiobacillus ferrooxidans cells on nickel alloy fibre for ferrous sulfate oxidation. Gómez JM; Cantero D; Webb C Appl Microbiol Biotechnol; 2000 Sep; 54(3):335-40. PubMed ID: 11030569 [TBL] [Abstract][Full Text] [Related]
37. [Biological oxidation of sulfide raw material using a culture of Thiobacillus ferrooxidans under various conditions of leaching]. Fomchenko NV; Slavkina OV; Biriukov VV Prikl Biokhim Mikrobiol; 2003; 39(1):92-6. PubMed ID: 12625048 [TBL] [Abstract][Full Text] [Related]
38. Influence of preservation substrate on iron oxidation ability of various Thiobacillus ferrooxidans isolates. Menon AG; Dave SR Microbiol Res; 1996 Aug; 151(3):225-9. PubMed ID: 8817915 [TBL] [Abstract][Full Text] [Related]
39. Glucose transport system in a facultative iron-oxidizing bacterium, Thiobacillus ferrooxidans. Sugio T; Kudo S; Tano T; Imai K J Bacteriol; 1982 Jun; 150(3):1109-14. PubMed ID: 6804437 [TBL] [Abstract][Full Text] [Related]
40. Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. Yamanaka T; Fukumori Y FEMS Microbiol Rev; 1995 Dec; 17(4):401-13. PubMed ID: 8845189 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]