These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 10698788)
1. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Crocetti GR; Hugenholtz P; Bond PL; Schuler A; Keller J; Jenkins D; Blackall LL Appl Environ Microbiol; 2000 Mar; 66(3):1175-82. PubMed ID: 10698788 [TBL] [Abstract][Full Text] [Related]
2. Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants. Kong Y; Nielsen JL; Nielsen PH Appl Environ Microbiol; 2005 Jul; 71(7):4076-85. PubMed ID: 16000823 [TBL] [Abstract][Full Text] [Related]
3. Polyphasic approaches to the identification of predominant polyphosphate-accumulating organisms in a laboratory-scale anaerobic/aerobic activated sludge system. Onda S; Hiraishi A; Matsuo Y; Takii S J Gen Appl Microbiol; 2002 Feb; 48(1):43-54. PubMed ID: 12469315 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the fine-scale population structure of "Candidatus accumulibacter phosphatis" in enhanced biological phosphorus removal sludge, using fluorescence in situ hybridization and flow cytometric sorting. Kim JM; Lee HJ; Kim SY; Song JJ; Park W; Jeon CO Appl Environ Microbiol; 2010 Jun; 76(12):3825-35. PubMed ID: 20418432 [TBL] [Abstract][Full Text] [Related]
7. The large PAO cells in full-scale EBPR biomass samples are not yeast spores but possibly novel members of the beta-Proteobacteria. Chua AS; Eales K; Mino T; Seviour R Water Sci Technol; 2004; 50(6):123-30. PubMed ID: 15536999 [TBL] [Abstract][Full Text] [Related]
8. In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Wong MT; Mino T; Seviour RJ; Onuki M; Liu WT Water Res; 2005 Aug; 39(13):2901-14. PubMed ID: 15993461 [TBL] [Abstract][Full Text] [Related]
9. Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal systems in Australia? Beer M; Stratton HM; Griffiths PC; Seviour RJ J Appl Microbiol; 2006 Feb; 100(2):233-43. PubMed ID: 16430499 [TBL] [Abstract][Full Text] [Related]
10. Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Eschenhagen M; Schuppler M; Röske I Water Res; 2003 Jul; 37(13):3224-32. PubMed ID: 14509710 [TBL] [Abstract][Full Text] [Related]
11. Fine-scale population structure of Accumulibacter phosphatis in enhanced biological phosphorus removal sludge. Wang Q; Shao Y; Huong VT; Park WJ; Park JM; Jeon CO J Microbiol Biotechnol; 2008 Jul; 18(7):1290-7. PubMed ID: 18667859 [TBL] [Abstract][Full Text] [Related]
12. High-temperature EBPR process: the performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus "Accumulibacter phosphatis". Ong YH; Chua ASM; Fukushima T; Ngoh GC; Shoji T; Michinaka A Water Res; 2014 Nov; 64():102-112. PubMed ID: 25046374 [TBL] [Abstract][Full Text] [Related]
13. Identification of trigger factors selecting for polyphosphate- and glycogen-accumulating organisms in aerobic granular sludge sequencing batch reactors. Weissbrodt DG; Schneiter GS; Fürbringer JM; Holliger C Water Res; 2013 Dec; 47(19):7006-18. PubMed ID: 24200006 [TBL] [Abstract][Full Text] [Related]
14. Identification of a novel subgroup of uncultured gammaproteobacterial glycogen-accumulating organisms in enhanced biological phosphorus removal sludge. Kim JM; Lee HJ; Lee DS; Lee K; Jeon CO Microbiology (Reading); 2011 Aug; 157(Pt 8):2287-2296. PubMed ID: 21602217 [TBL] [Abstract][Full Text] [Related]
15. Effect of anaerobic phases length on denitrifying dephosphatation biocenosis - a case study of IFAS-MBSBBR. Gnida A; Żubrowska-Sudoł M; Sytek-Szmeichel K; Podedworna J; Surmacz-Górska J; Marciocha D BMC Microbiol; 2020 Jul; 20(1):222. PubMed ID: 32709219 [TBL] [Abstract][Full Text] [Related]
16. Analysis of microbial community that performs enhanced biological phosphorus removal in activated sludge fed with acetate. Onuki M; Satoh H; Mino T Water Sci Technol; 2002; 46(1-2):145-53. PubMed ID: 12216616 [TBL] [Abstract][Full Text] [Related]
17. In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Liu WT; Nielsen AT; Wu JH; Tsai CS; Matsuo Y; Molin S Environ Microbiol; 2001 Feb; 3(2):110-22. PubMed ID: 11321541 [TBL] [Abstract][Full Text] [Related]
18. Population Structure and Morphotype Analysis of " Li C; Zeng W; Li N; Guo Y; Peng Y Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824450 [TBL] [Abstract][Full Text] [Related]
19. Involvement of Rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants. Zilles JL; Peccia J; Kim MW; Hung CH; Noguera DR Appl Environ Microbiol; 2002 Jun; 68(6):2763-9. PubMed ID: 12039731 [TBL] [Abstract][Full Text] [Related]
20. Competition between polyphosphate- and glycogen-accumulating organisms in enhanced-biological-phosphorus-removal systems: effect of temperature and sludge age. Whang LM; Park JK Water Environ Res; 2006 Jan; 78(1):4-11. PubMed ID: 16553160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]