These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 10699852)

  • 1. The enzymatic transformation of water-insoluble reactants in nonaqueous solvents. Conversion of cholesterol to cholest-4-ene-3-one by a Nocardia sp. Reprinted from Biotechnology and Bioengineering, Vol. XVII, Pages 815-826 (1975).
    Buckland BC; Dunnill P; Lilly MD
    Biotechnol Bioeng; 2000 Mar; 67(6):714-9. PubMed ID: 10699852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Steroid transformation with immobilized microorganisms. I. Transformation of cholesterol to cholestenone in organic solvents].
    Atrat P; Hüller E; Hörhold C
    Z Allg Mikrobiol; 1980; 20(2):79-84. PubMed ID: 6990643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new approach to preparative enzymatic synthesis. Reprinted from Biotechnology and Bioengineering, Vol. XIX, No. 9, Pages 1351-1361.
    Klibanov AM; Samokhin GP; Martinek K; Berezin IV
    Biotechnol Bioeng; 2000 Mar; 67(6):737-47. PubMed ID: 10699855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalysis in water-immiscible organic solvents: the use of immobilized living microorganisms.
    Duarte JM
    Ann N Y Acad Sci; 1983; 413():548-50. PubMed ID: 6584071
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of medium treatment on microbial degradation of sterols by Nocardia.
    Komel R
    Z Allg Mikrobiol; 1982; 22(6):373-8. PubMed ID: 7136012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative Bioconversion of Cholesterol by Pseudomonas sp. Strain ST-200 in a Water-Organic Solvent Two-Phase System.
    Aono R; Doukyu N; Kobayashi H; Nakajima H; Horikoshi K
    Appl Environ Microbiol; 1994 Jul; 60(7):2518-23. PubMed ID: 16349329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Steroid transformation using immobilized microorganisms. II. Degradation of the sidechain of cholesterol by immobilized cells of Nocardia erythropolis].
    Atrat P; Hüller E; Hörhold C; Buchar MJ; Arinbasarova AY; Koschtschejenko KA
    Z Allg Mikrobiol; 1980; 20(3):159-66. PubMed ID: 6999752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of 3 beta- and 17 beta-hydroxysteroids by Nocardia rubra cells in heptane-water system.
    Osipowicz B; Krezel Z; Siewiński A
    J Basic Microbiol; 1992; 32(3):215-6. PubMed ID: 1512713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of steroids by microorganisms. XVIII. The reversibility of steroid-1-dehydrogenation during microbial side chain degradation of sterols by Nocardia.
    Komel R; Groh H; Hörhold C
    Z Allg Mikrobiol; 1980; 20(10):637-40. PubMed ID: 6784354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steam sterilizable probes for dissolved oxygen measurement. Reprinted from Biotechnology and Bioengineering, Vol. VI, Issue 4, Pages 457-468 (1964).
    Johnson MJ; Borkowski J; Engblom C
    Biotechnol Bioeng; 2000 Mar; 67(6):645-56. PubMed ID: 10699847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation of structured growth models. Reprinted from Biotechnology and Bioengineering, Vol. XVIII, No. 10, Pages 1481-1486 (1976).
    Fredrickson AG
    Biotechnol Bioeng; 2000 Mar; 67(6):720-5. PubMed ID: 10699853
    [No Abstract]   [Full Text] [Related]  

  • 12. The cultivation of animal cells at controlled dissolved oxygen partial pressure. Reprinted from Biotechnology and Bioengineering Vol. X, Issue 6, Pages 801-814 (1968).
    Kilburn DG; Webb FC
    Biotechnol Bioeng; 2000 Mar; 67(6):657-70. PubMed ID: 10699848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of mass and energy balance regularities in fermentation. Reprinted from Biotechnology and Bioengineering, Vol. XX, No. 10, Pages 1595-1621 (1978).
    Erickson LE; Minkevich IG; Eroshin VK
    Biotechnol Bioeng; 2000 Mar; 67(6):748-74. PubMed ID: 10699856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the Absorption Rate of CO2 in Nonaqueous CO2-Binding Organic Liquid Solvents with a Wetted-Wall Apparatus.
    Mathias PM; Zheng F; Heldebrant DJ; Zwoster A; Whyatt G; Freeman CM; Bearden MD; Koech P
    ChemSusChem; 2015 Nov; 8(21):3617-25. PubMed ID: 26377774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of an organic-solvent-tolerant Brevibacillus agri strain 13 able to stabilize solvent/water emulsion.
    Kongpol A; Pongtharangkul T; Kato J; Honda K; Ohtake H; Vangnai AS
    FEMS Microbiol Lett; 2009 Aug; 297(2):225-33. PubMed ID: 19548892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of microbial conversion of cholesterol into 17-keto steroids.
    Sih CJ; Tai HH; Tsong YY
    J Am Chem Soc; 1967 Apr; 89(8):1957-8. PubMed ID: 6040528
    [No Abstract]   [Full Text] [Related]  

  • 17. Optimization studies of components in enzymatic cholesterol reagents containing cholesterol oxidase from Nocardia erythropolis, Streptomyces sp, or Pseudomonas fluorescens.
    Lolekha PH; Teerajetkul Y
    J Clin Lab Anal; 1996; 10(4):167-76. PubMed ID: 8811459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic transesterification of purine nucleoside having a low solubility in organic medium.
    Fan H; Kitagawa M; Raku T; Tokiwa Y
    Biotechnol Lett; 2004 Aug; 26(16):1261-4. PubMed ID: 15483383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic catalysis in cosolvent modified pressurized organic solvents.
    Sarkari M; Knutson BL; Chen CS
    Biotechnol Bioeng; 1999 Nov; 65(3):258-64. PubMed ID: 10486123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-aided real-time estimation of reaction conversion for lipase-catalyzed esterification in solvent-free systems.
    Won K; Jeong JC; Lee SB
    Biotechnol Bioeng; 2002 Sep; 79(7):795-803. PubMed ID: 12209802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.