BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10699864)

  • 21. Metabolic engineering for L-lysine production by Corynebacterium glutamicum.
    de Graaf AA; Eggeling L; Sahm H
    Adv Biochem Eng Biotechnol; 2001; 73():9-29. PubMed ID: 11816814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources.
    Becker J; Klopprogge C; Zelder O; Heinzle E; Wittmann C
    Appl Environ Microbiol; 2005 Dec; 71(12):8587-96. PubMed ID: 16332851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient 40 degrees C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding.
    Ohnishi J; Hayashi M; Mitsuhashi S; Ikeda M
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):69-75. PubMed ID: 12835923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression.
    Koffas MA; Jung GY; Stephanopoulos G
    Metab Eng; 2003 Jan; 5(1):32-41. PubMed ID: 12749842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum. Quantification by 13C- and 1H-NMR spectroscopy.
    Sonntag K; Eggeling L; De Graaf AA; Sahm H
    Eur J Biochem; 1993 May; 213(3):1325-31. PubMed ID: 8504824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biotechnological manufacture of lysine.
    Pfefferle W; Möckel B; Bathe B; Marx A
    Adv Biochem Eng Biotechnol; 2003; 79():59-112. PubMed ID: 12523389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis.
    Shirai T; Fujimura K; Furusawa C; Nagahisa K; Shioya S; Shimizu H
    Microb Cell Fact; 2007 Jun; 6():19. PubMed ID: 17587457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway.
    Xu J; Han M; Zhang J; Guo Y; Zhang W
    Amino Acids; 2014 Sep; 46(9):2165-75. PubMed ID: 24879631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant.
    Ohnishi J; Mitsuhashi S; Hayashi M; Ando S; Yokoi H; Ochiai K; Ikeda M
    Appl Microbiol Biotechnol; 2002 Feb; 58(2):217-23. PubMed ID: 11876415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry.
    Wittmann C; Heinzle E
    Metab Eng; 2001 Apr; 3(2):173-91. PubMed ID: 11289793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes of pentose phosphate pathway flux in vivo in Corynebacterium glutamicum during leucine-limited batch cultivation as determined from intracellular metabolite concentration measurements.
    Moritz B; Striegel K; de Graaf AA; Sahm H
    Metab Eng; 2002 Oct; 4(4):295-305. PubMed ID: 12646324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network.
    Kjeldsen KR; Nielsen J
    Biotechnol Bioeng; 2009 Feb; 102(2):583-97. PubMed ID: 18985611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Importance of phosphoenolpyruvate carboxylase of Corynebacterium glutamicum during the temperature triggered glutamic acid fermentation.
    Delaunay S; Uy D; Baucher MF; Engasser JM; Guyonvarch A; Goergen JL
    Metab Eng; 1999 Oct; 1(4):334-43. PubMed ID: 10937826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum.
    Becker J; Klopprogge C; Wittmann C
    Microb Cell Fact; 2008 Mar; 7():8. PubMed ID: 18339202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic regulation mechanisms in vivo.
    Petersen S; Mack C; de Graaf AA; Riedel C; Eikmanns BJ; Sahm H
    Metab Eng; 2001 Oct; 3(4):344-61. PubMed ID: 11676569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of glucose, fructose and sucrose as carbon sources on kinetics and stoichiometry of lysine production by Corynebacterium glutamicum.
    Kiefer P; Heinzle E; Wittmann C
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):338-43. PubMed ID: 12032807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lysine synthesis control in Corynebacterium glutamicum RC 115 in mixed substrate (glucose-acetate) medium.
    Paegle L; Ruklisha M
    J Biotechnol; 2003 Sep; 104(1-3):123-8. PubMed ID: 12948634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved L-lysine yield with Corynebacterium glutamicum: use of dapA resulting in increased flux combined with growth limitation.
    Eggeling L; Oberle S; Sahm H
    Appl Microbiol Biotechnol; 1998 Jan; 49(1):24-30. PubMed ID: 9487706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Microbiological production of L-lysine. I. The substrate specificity for the growth and lysine productivity of Corynebacterium glutamicum ATCC 13286].
    Rŭtkov A
    Acta Microbiol Bulg; 1983; 13():33-9. PubMed ID: 6417982
    [No Abstract]   [Full Text] [Related]  

  • 40. Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
    Dominguez H; Rollin C; Guyonvarch A; Guerquin-Kern JL; Cocaign-Bousquet M; Lindley ND
    Eur J Biochem; 1998 May; 254(1):96-102. PubMed ID: 9652400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.