These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 1070005)

  • 21. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose.
    HESTRIN S; SCHRAMM M
    Biochem J; 1954 Oct; 58(2):345-52. PubMed ID: 13208601
    [No Abstract]   [Full Text] [Related]  

  • 22. Purification, crystallization and preliminary X-ray studies of AxCesD required for efficient cellulose biosynthesis in Acetobacter xylinum.
    Hu S; Gao Y; Tajima K; Yao M; Yoda T; Shimura D; Satoh Y; Kawano S; Tanaka I; Munekata M
    Protein Pept Lett; 2008; 15(1):115-7. PubMed ID: 18221022
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain.
    Hu Y; Catchmark JM
    Biomacromolecules; 2010 Jul; 11(7):1727-34. PubMed ID: 20518455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum.
    Kimura S; Chen HP; Saxena IM; Brown RM; Itoh T
    J Bacteriol; 2001 Oct; 183(19):5668-74. PubMed ID: 11544230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural characterization of the Acetobacter xylinum endo-beta-1,4-glucanase CMCax required for cellulose biosynthesis.
    Yasutake Y; Kawano S; Tajima K; Yao M; Satoh Y; Munekata M; Tanaka I
    Proteins; 2006 Sep; 64(4):1069-77. PubMed ID: 16804941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of the Bacterial Cellulose Ribbon and Its Assembly-Guiding Cytoskeleton by Electron Cryotomography.
    Nicolas WJ; Ghosal D; Tocheva EI; Meyerowitz EM; Jensen GJ
    J Bacteriol; 2021 Jan; 203(3):. PubMed ID: 33199282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of gluconeogenesis in Acetobacter xylinum by hexoses.
    Weinhouse H; Benziman M
    Biochem Biophys Res Commun; 1971 Apr; 43(2):233-8. PubMed ID: 5577437
    [No Abstract]   [Full Text] [Related]  

  • 28. Cellulose synthesized by Acetobacter xylinum in the presence of multi-walled carbon nanotubes.
    Yan Z; Chen S; Wang H; Wang B; Wang C; Jiang J
    Carbohydr Res; 2008 Jan; 343(1):73-80. PubMed ID: 18005953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum.
    Weinhouse H; Sapir S; Amikam D; Shilo Y; Volman G; Ohana P; Benziman M
    FEBS Lett; 1997 Oct; 416(2):207-11. PubMed ID: 9369216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of cellulose microfibrils in a homogenate of Acetobacter xylinum.
    COLVIN JR
    Arch Biochem Biophys; 1957 Jul; 70(1):294-5. PubMed ID: 13445268
    [No Abstract]   [Full Text] [Related]  

  • 31. Influence of 1-methylcyclopropene (1-MCP) on the production of bacterial cellulose biosynthesized by Acetobacter xylinum under the agitated culture.
    Hu Y; Catchmark JM
    Lett Appl Microbiol; 2010 Jul; 51(1):109-13. PubMed ID: 20536705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulatory effect of Acetobacter xylinum cellulose on peritoneal macrophages.
    Daneshmandi S; Hajimoradi M; Soleimani N; Sattari M
    Immunopharmacol Immunotoxicol; 2011 Mar; 33(1):164-8. PubMed ID: 20536339
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular basis of cellulose biosynthesis disappearance in submerged culture of Acetobacter xylinum.
    Krystynowicz A; Koziołkiewicz M; Wiktorowska-Jezierska A; Bielecki S; Klemenska E; Masny A; Płucienniczak A
    Acta Biochim Pol; 2005; 52(3):691-8. PubMed ID: 16175243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct incorporation of glucosamine and N-acetylglucosamine into exopolymers by Gluconacetobacter xylinus (=Acetobacter xylinum) ATCC 10245: production of chitosan-cellulose and chitin-cellulose exopolymers.
    Lee JW; Deng F; Yeomans WG; Allen AL; Gross RA; Kaplan DL
    Appl Environ Microbiol; 2001 Sep; 67(9):3970-5. PubMed ID: 11525993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transformation of Acetobacter xylinum with plasmid DNA by electroporation.
    Hall PE; Anderson SM; Johnston DM; Cannon RE
    Plasmid; 1992 Nov; 28(3):194-200. PubMed ID: 1461938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The formation of cellulose microfibrils in suspensions of Acetobacter xylinum.
    COLVIN JR; BEER M
    Can J Microbiol; 1960 Dec; 6():631-7. PubMed ID: 13694864
    [No Abstract]   [Full Text] [Related]  

  • 37. Expressing Vitreoscilla hemoglobin in statically cultured Acetobacter xylinum with reduced O(2) tension maximizes bacterial cellulose pellicle production.
    Setyawati MI; Chien LJ; Lee CK
    J Biotechnol; 2007 Oct; 132(1):38-43. PubMed ID: 17868946
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The formation of cellulose microfibrils by Acetobacter xylinum in agar surfaces.
    MILLMAN B; COLVIN JR
    Can J Microbiol; 1961 Jun; 7():383-7. PubMed ID: 13770938
    [No Abstract]   [Full Text] [Related]  

  • 39. Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers.
    Sano MB; Rojas AD; Gatenholm P; Davalos RV
    Ann Biomed Eng; 2010 Aug; 38(8):2475-84. PubMed ID: 20300846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pyruvate-phosphate dikinase and the control of gluconeogenesis in Acetobacter xylinum.
    Benziman M; Eizen N
    J Biol Chem; 1971 Jan; 246(1):57-61. PubMed ID: 5541773
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.