These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 10700152)

  • 1. High-yield production of a human therapeutic protein in tobacco chloroplasts.
    Staub JM; Garcia B; Graves J; Hajdukiewicz PT; Hunter P; Nehra N; Paradkar V; Schlittler M; Carroll JA; Spatola L; Ward D; Ye G; Russell DA
    Nat Biotechnol; 2000 Mar; 18(3):333-8. PubMed ID: 10700152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenic chloroplasts are efficient sites for high-yield production of the vaccinia virus envelope protein A27L in plant cellsdagger.
    Rigano MM; Manna C; Giulini A; Pedrazzini E; Capobianchi M; Castilletti C; Di Caro A; Ippolito G; Beggio P; De Giuli Morghen C; Monti L; Vitale A; Cardi T
    Plant Biotechnol J; 2009 Aug; 7(6):577-91. PubMed ID: 19508274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of biopharmaceuticals and vaccines in plants via the chloroplast genome.
    Daniell H
    Biotechnol J; 2006 Oct; 1(10):1071-9. PubMed ID: 17004305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of recombinant proteins lacking methionine as N-terminal amino acid in plastids: human serum albumin as a case study.
    Fernández-San Millán A; Farran I; Molina A; Mingo-Castel AM; Veramendi J
    J Biotechnol; 2007 Jan; 127(4):593-604. PubMed ID: 17027113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contained and high-level production of recombinant protein in plant chloroplasts using a temporary immersion bioreactor.
    Michoux F; Ahmad N; McCarthy J; Nixon PJ
    Plant Biotechnol J; 2011 Jun; 9(5):575-84. PubMed ID: 21105992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of a recombinant bacterial lipoprotein in higher plant chloroplasts.
    Glenz K; Bouchon B; Stehle T; Wallich R; Simon MM; Warzecha H
    Nat Biotechnol; 2006 Jan; 24(1):76-7. PubMed ID: 16327810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of hEGF and hEGF-fusion proteins in chloroplast-transformed tobacco plants is higher in the dark than in the light.
    Wirth S; Segretin ME; Mentaberry A; Bravo-Almonacid F
    J Biotechnol; 2006 Sep; 125(2):159-72. PubMed ID: 16584796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the expression of the HIV fusion inhibitor cyanovirin-N from the tobacco plastid genome.
    Elghabi Z; Karcher D; Zhou F; Ruf S; Bock R
    Plant Biotechnol J; 2011 Jun; 9(5):599-608. PubMed ID: 21309998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Both the stroma and thylakoid lumen of tobacco chloroplasts are competent for the formation of disulphide bonds in recombinant proteins.
    Bally J; Paget E; Droux M; Job C; Job D; Dubald M
    Plant Biotechnol J; 2008 Jan; 6(1):46-61. PubMed ID: 17944820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tobacco plastidial thioredoxins as modulators of recombinant protein production in transgenic chloroplasts.
    Sanz-Barrio R; Millán AF; Corral-Martínez P; Seguí-Simarro JM; Farran I
    Plant Biotechnol J; 2011 Aug; 9(6):639-50. PubMed ID: 21426478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic.
    Fernández-San Millán A; Ortigosa SM; Hervás-Stubbs S; Corral-Martínez P; Seguí-Simarro JM; Gaétan J; Coursaget P; Veramendi J
    Plant Biotechnol J; 2008 Jun; 6(5):427-41. PubMed ID: 18422886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transgenic plastids in basic research and plant biotechnology.
    Bock R
    J Mol Biol; 2001 Sep; 312(3):425-38. PubMed ID: 11563907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel platform for biologically active recombinant human interleukin-13 production.
    Wang DJ; Brandsma M; Yin Z; Wang A; Jevnikar AM; Ma S
    Plant Biotechnol J; 2008 Jun; 6(5):504-15. PubMed ID: 18393948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced recovery of a secreted mammalian protein from suspension culture of genetically modified tobacco cells.
    Magnuson NS; Linzmaier PM; Gao JW; Reeves R; An G; Lee JM
    Protein Expr Purif; 1996 Mar; 7(2):220-8. PubMed ID: 8812866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A protocol for expression of foreign genes in chloroplasts.
    Verma D; Samson NP; Koya V; Daniell H
    Nat Protoc; 2008; 3(4):739-58. PubMed ID: 18388956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of Acidothermus cellulolyticus E1 endo-beta-1,4-glucanase catalytic domain in transplastomic tobacco.
    Ziegelhoffer T; Raasch JA; Austin-Phillips S
    Plant Biotechnol J; 2009 Aug; 7(6):527-36. PubMed ID: 19500296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastid transformation as an expression tool for plant-derived biopharmaceuticals.
    Scotti N; Cardi T
    Methods Mol Biol; 2012; 847():451-66. PubMed ID: 22351028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of Desmodus rotundus salivary plasminogen activator alpha1 (DSPAalpha1) in tobacco is hampered by proteolysis.
    Schiermeyer A; Schinkel H; Apel S; Fischer R; Schillberg S
    Biotechnol Bioeng; 2005 Mar; 89(7):848-58. PubMed ID: 15685597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of recombinant proteins in suspension-cultured plant cells.
    Plasson C; Michel R; Lienard D; Saint-Jore-Dupas C; Sourrouille C; de March GG; Gomord V
    Methods Mol Biol; 2009; 483():145-61. PubMed ID: 19183898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the chloroplast genome for hyperexpression of human therapeutic proteins and vaccine antigens.
    Kumar S; Daniell H
    Methods Mol Biol; 2004; 267():365-83. PubMed ID: 15269437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.