BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 10700266)

  • 21. Crystal structure of the S. cerevisiae D-ribose-5-phosphate isomerase: comparison with the archaeal and bacterial enzymes.
    Graille M; Meyer P; Leulliot N; Sorel I; Janin J; Van Tilbeurgh H; Quevillon-Cheruel S
    Biochimie; 2005 Aug; 87(8):763-9. PubMed ID: 16054529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The structure of a truncated phosphoribosylanthranilate isomerase suggests a unified model for evolution of the (βα)8 barrel fold.
    Setiyaputra S; Mackay JP; Patrick WM
    J Mol Biol; 2011 Apr; 408(2):291-303. PubMed ID: 21354426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directed evolution of (betaalpha)(8)-barrel enzymes.
    Höcker B
    Biomol Eng; 2005 Jun; 22(1-3):31-8. PubMed ID: 15857781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion.
    Lang D; Thoma R; Henn-Sax M; Sterner R; Wilmanns M
    Science; 2000 Sep; 289(5484):1546-50. PubMed ID: 10968789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the N-terminal extension of the (betaalpha)8-barrel enzyme indole-3-glycerol phosphate synthase for its fold, stability, and catalytic activity.
    Schneider B; Knöchel T; Darimont B; Hennig M; Dietrich S; Babinger K; Kirschner K; Sterner R
    Biochemistry; 2005 Dec; 44(50):16405-12. PubMed ID: 16342933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enantioselective biocatalysis optimized by directed evolution.
    Jaeger KE; Eggert T
    Curr Opin Biotechnol; 2004 Aug; 15(4):305-13. PubMed ID: 15358000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutation in the flexible loop of 1-deoxy-D-xylulose 5-phosphate reductoisomerase broadens substrate utilization.
    Fernandes RP; Phaosiri C; Proteau PJ
    Arch Biochem Biophys; 2005 Dec; 444(2):159-64. PubMed ID: 16289362
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of the binuclear manganese(II) site in xylose isomerase.
    Bogumil R; Kappl R; Hüttermann J
    Met Ions Biol Syst; 2000; 37():365-405. PubMed ID: 10693140
    [No Abstract]   [Full Text] [Related]  

  • 29. In vitro selection and characterization of a stable subdomain of phosphoribosylanthranilate isomerase.
    Patrick WM; Blackburn JM
    FEBS J; 2005 Jul; 272(14):3684-97. PubMed ID: 16008567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generation of variability by in vivo recombination of halves of a (beta/alpha)8 barrel protein.
    Saab-Rincón G; Mancera E; Montero-Morán G; Sánchez F; Soberón X
    Biomol Eng; 2005 Oct; 22(4):113-20. PubMed ID: 16125117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deletion mutagenesis as a test of evolutionary relatedness of indoleglycerol phosphate synthase with other TIM barrel enzymes.
    Stehlin C; Dahm A; Kirschner K
    FEBS Lett; 1997 Feb; 403(3):268-72. PubMed ID: 9091315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The chemical mechanism of D-1-deoxyxylulose-5-phosphate reductoisomerase from Escherichia coli.
    Wong U; Cox RJ
    Angew Chem Int Ed Engl; 2007; 46(26):4926-9. PubMed ID: 17516600
    [No Abstract]   [Full Text] [Related]  

  • 33. Experimental evidence for the existence of a stable half-barrel subdomain in the (beta/alpha)8-barrel fold.
    Akanuma S; Yamagishi A
    J Mol Biol; 2008 Oct; 382(2):458-66. PubMed ID: 18674541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directed evolution as a method to create enantioselective cyclohexanone monooxygenases for catalysis in Baeyer-Villiger reactions.
    Reetz MT; Brunner B; Schneider T; Schulz F; Clouthier CM; Kayser MM
    Angew Chem Int Ed Engl; 2004 Aug; 43(31):4075-8. PubMed ID: 15300699
    [No Abstract]   [Full Text] [Related]  

  • 35. Directed evolution of a (beta alpha)8-barrel enzyme to catalyze related reactions in two different metabolic pathways.
    Jürgens C; Strom A; Wegener D; Hettwer S; Wilmanns M; Sterner R
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):9925-30. PubMed ID: 10944186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein engineers turned evolutionists.
    Peisajovich SG; Tawfik DS
    Nat Methods; 2007 Dec; 4(12):991-4. PubMed ID: 18049465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combinatorial library approaches for improving soluble protein expression in Escherichia coli.
    Hart DJ; Tarendeau F
    Acta Crystallogr D Biol Crystallogr; 2006 Jan; 62(Pt 1):19-26. PubMed ID: 16369090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the role of the N-terminal group in the allosteric function of glucosamine-6-phosphate deaminase from Escherichia coli.
    Lara-González S; Dixon HB; Mendoza-Hernández G; Altamirano MM; Calcagno ML
    J Mol Biol; 2000 Aug; 301(1):219-27. PubMed ID: 10926504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering the substrate specificity of xylose isomerase.
    Karimäki J; Parkkinen T; Santa H; Pastinen O; Leisola M; Rouvinen J; Turunen O
    Protein Eng Des Sel; 2004 Dec; 17(12):861-9. PubMed ID: 15713782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of a ribose-5-phosphate isomerase RpiB (TM1080) from Thermotoga maritima at 1.90 A resolution.
    Xu Q; Schwarzenbacher R; McMullan D; von Delft F; Brinen LS; Canaves JM; Dai X; Deacon AM; Elsliger MA; Eshagi S; Floyd R; Godzik A; Grittini C; Grzechnik SK; Jaroszewski L; Karlak C; Klock HE; Koesema E; Kovarik JS; Kreusch A; Kuhn P; Lesley SA; Levin I; McPhillips TM; Miller MD; Morse A; Moy K; Ouyang J; Page R; Quijano K; Robb A; Spraggon G; Stevens RC; van den Bedem H; Velasquez J; Vincent J; Wang X; West B; Wolf G; Hodgson KO; Wooley J; Wilson IA
    Proteins; 2004 Jul; 56(1):171-5. PubMed ID: 15162497
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.