These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10700390)

  • 1. Effects of Al(3+) and related metals on membrane phase state and hydration: correlation with lipid oxidation.
    Verstraeten SV; Oteiza PI
    Arch Biochem Biophys; 2000 Mar; 375(2):340-6. PubMed ID: 10700390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A marked stimulation of Fe2+-initiated lipid peroxidation in phospholipid liposomes by a lipophilic aluminum complex, aluminum acetylacetonate.
    Ohyashiki T; Suzuki S; Satoh E; Uemori Y
    Biochim Biophys Acta; 1998 Jan; 1389(2):141-9. PubMed ID: 9461255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disclosure of discrete sites for phospholipid and sterols at the protein-lipid interface in native acetylcholine receptor-rich membrane.
    Antollini SS; Barrantes FJ
    Biochemistry; 1998 Nov; 37(47):16653-62. PubMed ID: 9843433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of aluminium ions on liposomal membranes as detected by Laurdan fluorescence.
    Dousset N; Ferretti G; Galeazzi T; Taus M; Gouaze V; Berthon G; Curatola G
    Free Radic Res; 1997 Sep; 27(3):291-9. PubMed ID: 9350433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria Sulfolobus acidocaldarius.
    Bagatolli L; Gratton E; Khan TK; Chong PL
    Biophys J; 2000 Jul; 79(1):416-25. PubMed ID: 10866967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sc3+, Ga3+, In3+, Y3+, and Be2+ promote changes in membrane physical properties and facilitate Fe2(+)-initiated lipid peroxidation.
    Verstraeten SV; Oteiza PI
    Arch Biochem Biophys; 1995 Sep; 322(1):284-90. PubMed ID: 7574688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of laurdan sensitivity to the vesicle-to-micelle transition of phospholipid-octylglucoside system: a time-resolved fluorescence study.
    Viard M; Gallay J; Vincent M; Paternostre M
    Biophys J; 2001 Jan; 80(1):347-59. PubMed ID: 11159407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profile of changes in lipid bilayer structure caused by beta-amyloid peptide.
    Kremer JJ; Sklansky DJ; Murphy RM
    Biochemistry; 2001 Jul; 40(29):8563-71. PubMed ID: 11456496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer.
    Antollini SS; Soto MA; Bonini de Romanelli I; GutiƩrrez-Merino C; Sotomayor P; Barrantes FJ
    Biophys J; 1996 Mar; 70(3):1275-84. PubMed ID: 8785283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles.
    Bagatolli LA; Gratton E
    Biophys J; 1999 Oct; 77(4):2090-101. PubMed ID: 10512829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanism for the stimulatory effect of aluminum on iron-induced lipid peroxidation.
    Oteiza PI
    Arch Biochem Biophys; 1994 Feb; 308(2):374-9. PubMed ID: 8109967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of trivalent metal ions on phase separation and membrane lipid packing: role in lipid peroxidation.
    Verstraeten SV; Nogueira LV; Schreier S; Oteiza PI
    Arch Biochem Biophys; 1997 Feb; 338(1):121-7. PubMed ID: 9015396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pb2+ promotes lipid oxidation and alterations in membrane physical properties.
    Adonaylo VN; Oteiza PI
    Toxicology; 1999 Jan; 132(1):19-32. PubMed ID: 10199578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence.
    Bagatolli LA; Gratton E; Fidelio GD
    Biophys J; 1998 Jul; 75(1):331-41. PubMed ID: 9649390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence.
    Parasassi T; De Stasio G; Ravagnan G; Rusch RM; Gratton E
    Biophys J; 1991 Jul; 60(1):179-89. PubMed ID: 1883937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence.
    Parasassi T; De Stasio G; d'Ubaldo A; Gratton E
    Biophys J; 1990 Jun; 57(6):1179-86. PubMed ID: 2393703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases.
    Krasnowska EK; Gratton E; Parasassi T
    Biophys J; 1998 Apr; 74(4):1984-93. PubMed ID: 9545057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order.
    Harris FM; Best KB; Bell JD
    Biochim Biophys Acta; 2002 Sep; 1565(1):123-8. PubMed ID: 12225860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence studies of the interactions of ubiquinol-10 with liposomes.
    Fiorini R; Ragni L; Ambrosi S; Littarru GP; Gratton E; Hazlett T
    Photochem Photobiol; 2008; 84(1):209-14. PubMed ID: 18173722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jan; 78(1):290-305. PubMed ID: 10620293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.