These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 10700593)

  • 1. Cyclic AMP and protein kinase A rhythmicity in the mammalian suprachiasmatic nuclei.
    Ferreyra GA; Golombek DA
    Brain Res; 2000 Mar; 858(1):33-9. PubMed ID: 10700593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diurnal variations in cyclic AMP and melatonin content of golden hamster retina.
    Faillace MP; Sarmiento MI; Siri LN; Rosenstein RE
    J Neurochem; 1994 May; 62(5):1995-2000. PubMed ID: 8158146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhythmicity of the cGMP-related signal transduction pathway in the mammalian circadian system.
    Ferreyra GA; Golombek DA
    Am J Physiol Regul Integr Comp Physiol; 2001 May; 280(5):R1348-55. PubMed ID: 11294753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential cAMP gating of glutamatergic signaling regulates long-term state changes in the suprachiasmatic circadian clock.
    Tischkau SA; Gallman EA; Buchanan GF; Gillette MU
    J Neurosci; 2000 Oct; 20(20):7830-7. PubMed ID: 11027248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photic control of nitric oxide synthase activity in the hamster suprachiasmatic nuclei.
    Ferreyra GA; Cammarota MP; Golombek DA
    Brain Res; 1998 Jun; 797(2):190-6. PubMed ID: 9666124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian heme oxygenase activity in the hamster suprachiasmatic nuclei.
    Rubio MF; Agostino PV; Ferreyra GA; Golombek DA
    Neurosci Lett; 2003 Dec; 353(1):9-12. PubMed ID: 14642425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dark pulse suppression of P-ERK and c-Fos in the hamster suprachiasmatic nuclei.
    Coogan AN; Piggins HD
    Eur J Neurosci; 2005 Jul; 22(1):158-68. PubMed ID: 16029205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shedding light on circadian clock resetting by dark exposure: differential effects between diurnal and nocturnal rodents.
    Mendoza J; Revel FG; Pévet P; Challet E
    Eur J Neurosci; 2007 May; 25(10):3080-90. PubMed ID: 17561821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photic regulation of map kinase phosphatases MKP1/2 and MKP3 in the hamster suprachiasmatic nuclei.
    Pizzio GA; Golombek DA
    J Mol Neurosci; 2008 Feb; 34(2):187-92. PubMed ID: 18058073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the VPAC2-activated cAMP/PKA signaling pathway: from receptor to circadian clock gene induction.
    Hao H; Zak DE; Sauter T; Schwaber J; Ogunnaike BA
    Biophys J; 2006 Mar; 90(5):1560-71. PubMed ID: 16339878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimuli which entrain the circadian clock of the neonatal Syrian hamster in vivo regulate the phosphorylation of the transcription factor CREB in the suprachiasmatic nucleus in vitro.
    McNulty S; Schurov IL; Sloper PJ; Hastings MH
    Eur J Neurosci; 1998 Mar; 10(3):1063-72. PubMed ID: 9753174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents.
    Dardente H; Menet JS; Challet E; Tournier BB; Pévet P; Masson-Pévet M
    Brain Res Mol Brain Res; 2004 May; 124(2):143-51. PubMed ID: 15135222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-induced circadian clock resetting in the Syrian hamster: effects of melatonin.
    Antle MC; Ludgate S; Mistlberger RE
    Neurosci Lett; 2002 Jan; 317(1):5-8. PubMed ID: 11750983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diurnal, circadian and photic regulation of calcium/calmodulin-dependent kinase II and neuronal nitric oxide synthase in the hamster suprachiasmatic nuclei.
    Agostino PV; Ferreyra GA; Murad AD; Watanabe Y; Golombek DA
    Neurochem Int; 2004 Jun; 44(8):617-25. PubMed ID: 15016477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light and melatonin inhibit in vivo serotonergic phase advances without altering serotonergic-induced decrease of per expression in the hamster suprachiasmatic nucleus.
    Caldelas I; Challet E; Saboureau M; Pevet P
    J Mol Neurosci; 2005; 25(1):53-63. PubMed ID: 15781966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daily and photoperiodic melatonin binding changes in the suprachiasmatic nuclei, paraventricular thalamic nuclei, and pars tuberalis of the female Siberian hamster (Phodopus sungorus).
    Recio J; Pévet P; Vivien-Roels B; Míguez JM; Masson-Pévet M
    J Biol Rhythms; 1996 Dec; 11(4):325-32. PubMed ID: 8946260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian locomotor rhythms, but not photoperiodic responses, survive surgical isolation of the SCN in hamsters.
    Hakim H; DeBernardo AP; Silver R
    J Biol Rhythms; 1991; 6(2):97-113. PubMed ID: 1773090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian and photic regulation of ERK, JNK and p38 in the hamster SCN.
    Pizzio GA; Hainich EC; Ferreyra GA; Coso OA; Golombek DA
    Neuroreport; 2003 Aug; 14(11):1417-9. PubMed ID: 12960755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; Pévet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.