These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 10701112)

  • 1. Properties of sequence-tagged-site primer sets influencing repeatability.
    Vanichanon A; Blake NK; Martin JM; Talbert LE
    Genome; 2000 Feb; 43(1):47-52. PubMed ID: 10701112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of barley genome segments introgressed into wheat using PCR markers.
    Sherman JD; Smith LY; Blake TK; Talbert LE
    Genome; 2001 Feb; 44(1):38-44. PubMed ID: 11269354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-species amplification of the Hordeum chilense genome using barley sequence-tagged-sites (STSs).
    Hernández P; Dorado G; Martín A
    Hereditas; 2001; 135(2-3):243-6. PubMed ID: 12152342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer of sequence tagged site PCR markers between wheat and barley.
    Erpelding JE; Blake NK; Blake TK; Talbert LE
    Genome; 1996 Aug; 39(4):802-10. PubMed ID: 18469937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene-specific universal mammalian sequence-tagged sites: application to the canine genome.
    Venta PJ; Brouillette JA; Yuzbasiyan-Gurkan V; Brewer GJ
    Biochem Genet; 1996 Aug; 34(7-8):321-41. PubMed ID: 8894053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expressed sequence tag-PCR markers for identification of alien barley chromosome 2H in wheat.
    Wang MJ; Zou HD; Lin ZS; Wu Y; Chen X; Yuan YP
    Genet Mol Res; 2012 Sep; 11(3):3452-63. PubMed ID: 23079838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design factors that influence PCR amplification success of cross-species primers among 1147 mammalian primer pairs.
    Housley DJ; Zalewski ZA; Beckett SE; Venta PJ
    BMC Genomics; 2006 Oct; 7():253. PubMed ID: 17029642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel reference gene, PKABA1, used in a duplex real-time polymerase chain reaction for detection and quantitation of wheat- and barley-derived DNA.
    Rønning SB; Berdal KG; Andersen CB; Holst-Jensen A
    J Agric Food Chem; 2006 Feb; 54(3):682-7. PubMed ID: 16448168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of AFLP markers associated with FHB resistance in wheat into STS markers with an extension-AFLP method.
    Xu DH; Ban T
    Genome; 2004 Aug; 47(4):660-5. PubMed ID: 15284870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AFLP targeting of the 1-cM region conferring the vrs1 gene for six-rowed spike in barley, Hordeum vulgare L.
    He C; Sayed-Tabatabaei BE; Komatsuda T
    Genome; 2004 Dec; 47(6):1122-9. PubMed ID: 15644970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time polymerase chain reaction based assays for quantitative detection of barley, rice, sunflower, and wheat.
    Hernández M; Esteve T; Pla M
    J Agric Food Chem; 2005 Sep; 53(18):7003-9. PubMed ID: 16131102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [RAPD-based analysis of introgression of barley genetic material into the genome of alloplasmic wheat lines (Hordeum geniculatum All./ Triticum aestivum L.)].
    Trubacheeva NV; Salina EA; Numerova OM; Pershina LA
    Genetika; 2003 Jun; 39(6):791-5. PubMed ID: 12884518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic analysis of cultivated barley (Hordeum vulgare) using sequence-tagged molecular markers. Estimates of divergence based on RFLP and PCR markers derived from stress-responsive genes, and simple-sequence repeats (SSRs).
    Maestri E; Malcevschi A; Massari A; Marmiroli N
    Mol Genet Genomics; 2002 Apr; 267(2):186-201. PubMed ID: 11976962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of oat-based markers from barley and wheat microsatellites.
    Oliver RE; Obert DE; Hu G; Bonman JM; O'Leary-Jepsen E; Jackson EW
    Genome; 2010 Jun; 53(6):458-71. PubMed ID: 20555435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Polymerase chain reaction, cold probes and clinical diagnosis].
    Haras D; Amoros JP
    Sante; 1994; 4(1):43-52. PubMed ID: 7909267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rye chromosome-specific polymerase chain reaction products developed by primers designed from the EcoO109I recognition site.
    Tomita M; Seno A
    Genome; 2012 May; 55(5):370-82. PubMed ID: 22563759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivar identification of rice (Oryza sativa L.) by polymerase chain reaction method and its application to processed rice products.
    Ohtsubo K; Nakamura S
    J Agric Food Chem; 2007 Feb; 55(4):1501-9. PubMed ID: 17256960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical comparison of nine PCR primer sets designed to detect the presence of Escherichia coli/Shigella in water samples.
    Maheux AF; Picard FJ; Boissinot M; Bissonnette L; Paradis S; Bergeron MG
    Water Res; 2009 Jul; 43(12):3019-28. PubMed ID: 19482328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of "sequence-tagged-site" PCR products as molecular markers in wheat.
    Talbert LE; Blake NK; Chee PW; Blake TK; Magyar GM
    Theor Appl Genet; 1994 Feb; 87(7):789-94. PubMed ID: 24190464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of SNPs and development of allele-specific PCR markers for gamma-gliadin alleles in Triticum aestivum.
    Zhang W; Gianibelli MC; Ma W; Rampling L; Gale KR
    Theor Appl Genet; 2003 Jun; 107(1):130-8. PubMed ID: 12712246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.