BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 10701503)

  • 1. Photon fluence perturbation correction factors for solid state detectors irradiated in kilovoltage photon beams.
    Mobit PN; Sandison GA; Nahum AE
    Phys Med Biol; 2000 Feb; 45(2):267-77. PubMed ID: 10701503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron fluence perturbation correction factors for solid state detectors irradiated in megavoltage electron beams.
    Mobit PN; Sandison GA; Nahum AE
    Phys Med Biol; 2000 Feb; 45(2):255-65. PubMed ID: 10701502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the KQclinfclin,Qmsr fmsr correction factors for detectors used with an 800 MU/min CyberKnife(®) system equipped with fixed collimators and a study of detector response to small photon beams using a Monte Carlo method.
    Moignier C; Huet C; Makovicka L
    Med Phys; 2014 Jul; 41(7):071702. PubMed ID: 24989371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral distribution of particle fluence in small field detectors and its implication on small field dosimetry.
    Benmakhlouf H; Andreo P
    Med Phys; 2017 Feb; 44(2):713-724. PubMed ID: 28032369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Monte Carlo based development of a cavity theory for solid state detectors irradiated in electron beams.
    Mobit P; Sandison G
    Radiat Prot Dosimetry; 2002; 101(1-4):427-9. PubMed ID: 12382783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy response of an aluminium oxide detector in kilovoltage and megavoltage photon beams: an EGSnrc Monte Carlo simulation study.
    Agyingi EO; Mobit PN; Sandison GA
    Radiat Prot Dosimetry; 2006; 118(1):28-31. PubMed ID: 16046555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass-energy absorption coefficient and backscatter factor ratios for kilovoltage x-ray beams.
    Ma CM; Seuntjens JP
    Phys Med Biol; 1999 Jan; 44(1):131-43. PubMed ID: 10071880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of a synthetic diamond detector response in kilovoltage photon beams.
    Kaveckyte V; Persson L; Malusek A; Benmakhlouf H; Alm Carlsson G; Carlsson Tedgren Å
    Med Phys; 2020 Mar; 47(3):1268-1279. PubMed ID: 31880809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).
    Tedgren AC; Hedman A; Grindborg JE; Carlsson GA
    Med Phys; 2011 Oct; 38(10):5539-50. PubMed ID: 21992372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using cavity theory to describe the dependence on detector density of dosimeter response in non-equilibrium small fields.
    Fenwick JD; Kumar S; Scott AJ; Nahum AE
    Phys Med Biol; 2013 May; 58(9):2901-23. PubMed ID: 23574749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Monte Carlo study of the quality dependence factors of common TLD materials in photon and electron beams.
    Mobit PN; Nahum AE; Mayles P
    Phys Med Biol; 1998 Aug; 43(8):2015-32. PubMed ID: 9725586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy correction factors of LiF powder TLDs irradiated in high-energy electron beams and applied to mailed dosimetry for quality assurance networks.
    Marre D; Ferreira IH; Bridier A; Björeland A; Svensson H; Dutreix A; Chavaudra J
    Phys Med Biol; 2000 Dec; 45(12):3657-74. PubMed ID: 11131191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry.
    Benmakhlouf H; Bouchard H; Fransson A; Andreo P
    Phys Med Biol; 2011 Nov; 56(22):7179-204. PubMed ID: 22024474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cema-based formalism for the determination of absorbed dose for high-energy photon beams.
    Hartmann GH; Andreo P; Kapsch RP; Zink K
    Med Phys; 2021 Nov; 48(11):7461-7475. PubMed ID: 34613620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dosimetric response of variable-size cavities in photon-irradiated media and the behaviour of the Spencer-Attix cavity integral with increasing Δ.
    Kumar S; Deshpande DD; Nahum AE
    Phys Med Biol; 2016 Apr; 61(7):2680-704. PubMed ID: 26976308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV-18 MeV.
    Hermida-López M; Lüdemann L; Flühs A; Brualla L
    Med Phys; 2014 Nov; 41(11):112103. PubMed ID: 25370654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the density, density effect and mean excitation energy in solid-state detectors for small photon fields.
    Andreo P; Benmakhlouf H
    Phys Med Biol; 2017 Feb; 62(4):1518-1532. PubMed ID: 28036305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An EGS4 Monte Carlo examination of general cavity theory.
    Mobit PN; Nahum AE; Mayles P
    Phys Med Biol; 1997 Jul; 42(7):1319-34. PubMed ID: 9253042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Monte Carlo comparison of the response of the PTW-diamond and the TL-diamond detectors in megavoltage photon beams.
    Mobit PN; Sandison GA
    Med Phys; 1999 Nov; 26(11):2503-7. PubMed ID: 10587240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo investigation of electron fluence perturbation in MRI-guided radiotherapy beams using six commercial radiation detectors.
    Cervantes Y; Duane S; Bouchard H
    Phys Med Biol; 2022 Jan; 67(3):. PubMed ID: 35026745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.