BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10701677)

  • 1. Calculation of electrophoretic mobilities in water-organic modifier mixtures in capillary electrophoresis.
    Jouyban-Gharamaleki A; Khaledi MG; Clark BJ
    J Chromatogr A; 2000 Feb; 868(2):277-84. PubMed ID: 10701677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of electrophoretic mobility in mixed solvent buffers in capillary zone electrophoresis using a mixture response surface method.
    Jouyban A; Grosse SC; Coleman MW; Chan HK; Kenndler E; Clark BJ
    Analyst; 2002 Sep; 127(9):1188-92. PubMed ID: 12375841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary electrophoresis in aqueous-organic media. Ionic strength effects and limitations of the Hubbard-Onsager dielectric friction model.
    Roy KI; Lucy CA
    J Chromatogr A; 2002 Jul; 964(1-2):213-25. PubMed ID: 12198851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical representation of electrophoretic mobility of basic drugs in ternary solvent buffers in capillary zone electrophoresis.
    Jouyban A; Grosse SC; Chan HK; Coleman MW; Clark BJ
    J Chromatogr A; 2003 Apr; 994(1-2):191-8. PubMed ID: 12779229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of electrophoretic mobility in ternary solvent electrolyte systems.
    Jouyban A; Chan HK; Khoubnasabjafari M; Clark BJ
    J Pharm Biomed Anal; 2003 Jun; 32(2):203-8. PubMed ID: 12763529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of the electrophoretic mobility of amines in methanol-aqueous electrolyte systems.
    Jouyban A; Batish A; Rumbelow SJ; Clark BJ
    Analyst; 2001 Nov; 126(11):1958-62. PubMed ID: 11763074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophoretic behavior of peptides in capillary electrophoresis influence of ionic strength and pH in aqueous-organic media.
    Sanz-Nebot V; Benavente F; Toro I; Barbosa J
    J Chromatogr A; 2001 Jun; 921(1):69-79. PubMed ID: 11461015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophoretic mobilities of cationic analytes in non-aqueous methanol, acetonitrile and their mixtures. Influence of ionic strength and ion-pair formation.
    Porras SP; Riekkola ML; Kenndler E
    J Chromatogr A; 2001 Jul; 924(1-2):31-42. PubMed ID: 11521879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pKa values of peptides in aqueous and aqueous-organic media. Prediction of chromatographic and electrophoretic behaviour.
    Sanz-Nebot V; Toro I; Benavente F; Barbosa J
    J Chromatogr A; 2002 Jan; 942(1-2):145-56. PubMed ID: 11822380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the electrophoretic mobility of beta-blockers in capillary electrophoresis using artificial neural networks.
    Jouyban A; Majidi MR; Asadpour-Zeynali K
    Farmaco; 2005 Mar; 60(3):255-9. PubMed ID: 15784246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of ζ-potential, charge, and number of organic ligands on the surface of water soluble quantum dots by capillary electrophoresis.
    Voráčová I; Klepárník K; Lišková M; Foret F
    Electrophoresis; 2015 Mar; 36(6):867-74. PubMed ID: 25521532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of methanol as a buffer additive on the mobilities of organic cations in capillary electrophoresis.
    Roy KI; Lucy CA
    Electrophoresis; 2003 Jan; 24(3):370-9. PubMed ID: 12569529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the effect of ionic strength of Tris-acetate background electrolyte on electrophoretic mobilities of mono-, di-, and trivalent organic anions by capillary electrophoresis.
    Koval D; Kasicka V; Zusková I
    Electrophoresis; 2005 Sep; 26(17):3221-31. PubMed ID: 16097028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of pH and pKa values on electrophoretic behaviour of quinolones in aqueous and hydro-organic media.
    Barrón D; Jiménez-Lozano E; Irles A; Barbosa J
    J Chromatogr A; 2000 Feb; 871(1-2):381-9. PubMed ID: 10735318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable electrophoretic mobilities free from Joule heating effects using CE.
    Evenhuis CJ; Hruska V; Guijt RM; Macka M; Gas B; Marriott PJ; Haddad PR
    Electrophoresis; 2007 Oct; 28(20):3759-66. PubMed ID: 17941134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of organic solvents on the resolution of synthetic peptides by capillary electrophoresis.
    Yang Y; Boysen RI; Hearn MT
    J Chromatogr A; 2004 Jul; 1043(1):81-9. PubMed ID: 15317416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of electroosmotic flow mobility with a pressure-mediated dual-ion technique for capillary electrophoresis with conductivity detection using organic solvents.
    Muzikar J; van de Goor T; Gas B; Kenndler E
    J Chromatogr A; 2002 Jun; 960(1-2):199-208. PubMed ID: 12150558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two variable semi-empirical and artificial neural-network-based modeling of peptide mobilities in CZE: the effect of temperature and organic modifier concentration.
    Mittermayr S; Chovan T; Guttman A
    Electrophoresis; 2009 Mar; 30(5):890-6. PubMed ID: 19197908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nonaqueous buffer modifiers on the capillary electrophoresis-mass spectrometry analysis of peptides.
    Deterding LJ; Khaledi M; Tomer KB
    J Capill Electrophor Microchip Technol; 2003; 8(1-2):11-8. PubMed ID: 12757123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fingerprinting of natural organic matter by capillary zone electrophoresis using organic modifiers and pattern recognition analysis.
    Egeberg PK; Bergli SO
    J Chromatogr A; 2002 Mar; 950(1-2):221-31. PubMed ID: 11990996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.