These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 10701872)
21. Incremental redistribution of protein kinase C underlies the acquisition curve during in vitro associative conditioning in Hermissenda. Muzzio IA; Talk AC; Matzel LD Behav Neurosci; 1997 Aug; 111(4):739-53. PubMed ID: 9267651 [TBL] [Abstract][Full Text] [Related]
22. Modulation of presynaptic action potential kinetics underlies synaptic facilitation of type B photoreceptors after associative conditioning in Hermissenda. Gandhi CC; Matzel LD J Neurosci; 2000 Mar; 20(5):2022-35. PubMed ID: 10684903 [TBL] [Abstract][Full Text] [Related]
23. Conditioned modification of locomotion in Hermissenda crassicornis: analysis of time-dependent associative and nonassociative components. Crow T J Neurosci; 1983 Dec; 3(12):2621-8. PubMed ID: 6686249 [TBL] [Abstract][Full Text] [Related]
24. Inhibition of protein synthesis prolongs Ca2+-mediated reduction of K+ currents in molluscan neurons. Alkon DL; Bank B; Naito S; Chen C; Ram J Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6948-52. PubMed ID: 3477819 [TBL] [Abstract][Full Text] [Related]
25. Inhibition of hippocampal protein synthesis following recall disrupts expression of episodic-like memory in trace conditioning. Runyan JD; Dash PK Hippocampus; 2005; 15(3):333-9. PubMed ID: 15523611 [TBL] [Abstract][Full Text] [Related]
26. Transient changes in excitability of rabbit CA3 neurons with a time course appropriate to support memory consolidation. Thompson LT; Moyer JR; Disterhoft JF J Neurophysiol; 1996 Sep; 76(3):1836-49. PubMed ID: 8890296 [TBL] [Abstract][Full Text] [Related]
27. Protein synthesis-dependent and mRNA synthesis-independent intermediate phase of memory in Hermissenda. Crow T; Xue-Bian JJ; Siddiqi V J Neurophysiol; 1999 Jul; 82(1):495-500. PubMed ID: 10400977 [TBL] [Abstract][Full Text] [Related]
28. Time-dependent changes in excitability after one-trial conditioning of Hermissenda. Crow T; Siddiqi V J Neurophysiol; 1997 Dec; 78(6):3460-4. PubMed ID: 9405561 [TBL] [Abstract][Full Text] [Related]
29. Influence of mRNA and protein synthesis inhibitors on the long-term memory acquisition of classically conditioned earthworms. Watanabe H; Takaya T; Shimoi T; Ogawa H; Kitamura Y; Oka K Neurobiol Learn Mem; 2005 Mar; 83(2):151-7. PubMed ID: 15721799 [TBL] [Abstract][Full Text] [Related]
30. Serotonin modulation of Hermissenda type B photoreceptor light responses and ionic currents: implications for mechanisms underlying associative learning. Farley J; Wu R Brain Res Bull; 1989 Feb; 22(2):335-51. PubMed ID: 2468402 [TBL] [Abstract][Full Text] [Related]
31. Contingency learning and causal detection in Hermissenda: I. Behavior. Farley J Behav Neurosci; 1987 Feb; 101(1):13-27. PubMed ID: 3828050 [TBL] [Abstract][Full Text] [Related]
32. In vitro conditioning induces morphological changes in Hermissenda type B photoreceptor. Kawai R; Horikoshi T; Yasuoka T; Sakakibara M Neurosci Res; 2002 Aug; 43(4):363-72. PubMed ID: 12135779 [TBL] [Abstract][Full Text] [Related]
33. The interstimulus interval and classical conditioning in the marine snail Hermissenda crassicornis. Lederhendler II; Alkon DL Behav Brain Res; 1989 Oct; 35(1):75-80. PubMed ID: 2803546 [TBL] [Abstract][Full Text] [Related]
34. Pavlovian conditioning-specific increases of the Ca2+- and GTP-binding protein, calexcitin in identified Hermissenda visual cells. Kuzirian AM; Epstein HT; Buck D; Child FM; Nelson T; Alkon DL J Neurocytol; 2001 Dec; 30(12):993-1008. PubMed ID: 12626881 [TBL] [Abstract][Full Text] [Related]
35. Inhibition of cerebral protein synthesis does not prolong short-term memory. Davis HP; Rosenweig MR; Jones OW; Bennett EL J Comp Physiol Psychol; 1981 Aug; 95(4):556-64. PubMed ID: 7276280 [TBL] [Abstract][Full Text] [Related]
36. Light paired with serotonin in vivo produces both short- and long-term enhancement of generator potentials of identified B-photoreceptors in Hermissenda. Crow T; Forrester J J Neurosci; 1991 Mar; 11(3):608-17. PubMed ID: 2002355 [TBL] [Abstract][Full Text] [Related]
37. Protein synthesis required for long-term memory is induced by PKC activation on days before associative learning. Alkon DL; Epstein H; Kuzirian A; Bennett MC; Nelson TJ Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16432-7. PubMed ID: 16258064 [TBL] [Abstract][Full Text] [Related]
38. Bryostatin enhancement of memory in Hermissenda. Kuzirian AM; Epstein HT; Gagliardi CJ; Nelson TJ; Sakakibara M; Taylor C; Scioletti AB; Alkon DL Biol Bull; 2006 Jun; 210(3):201-14. PubMed ID: 16801495 [TBL] [Abstract][Full Text] [Related]
39. Protein phosphorylation and associative learning in Hermissenda. Neary JT; Alkon DL Acta Biochim Biophys Hung; 1986; 21(3):159-76. PubMed ID: 2432746 [TBL] [Abstract][Full Text] [Related]
40. Postsynaptic calcium, but not cumulative depolarization, is necessary for the induction of associative plasticity in Hermissenda. Matzel LD; Rogers RF J Neurosci; 1993 Dec; 13(12):5029-40. PubMed ID: 8254359 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]