BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 10702876)

  • 1. Syntheses of amphiphilic glycosylamides from glycosyl azides without transient reduction to glycosylamines.
    Boullanger P; Maunier V; Lafont D
    Carbohydr Res; 2000 Feb; 324(2):97-106. PubMed ID: 10702876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traceless Staudinger ligation of glycosyl azides with triaryl phosphines: stereoselective synthesis of glycosyl amides.
    Bianchi A; Bernardi A
    J Org Chem; 2006 Jun; 71(12):4565-77. PubMed ID: 16749790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron(III) chloride as an efficient catalyst for stereoselective synthesis of glycosyl azides and a cocatalyst with Cu(0) for the subsequent click chemistry.
    Salunke SB; Babu NS; Chen CT
    Chem Commun (Camb); 2011 Oct; 47(37):10440-2. PubMed ID: 21842053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective synthesis of glycosyl amides by traceless Staudinger ligation of unprotected glycosyl azides.
    Nisic F; Bernardi A
    Carbohydr Res; 2008 Jul; 343(10-11):1636-43. PubMed ID: 18468589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoselective synthesis of α-glycosyl azides by ring-opening of 1,6-anhydrosugars with trimethylsilyl azide.
    Cui T; Smith R; Zhu X
    Carbohydr Res; 2015 Oct; 416():14-20. PubMed ID: 26340302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereoselective N-glycosylation by Staudinger ligation.
    He Y; Hinklin RJ; Chang J; Kiessling LL
    Org Lett; 2004 Nov; 6(24):4479-82. PubMed ID: 15548055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective reduction of anomeric azides to amines with tetrathiomolybdate: synthesis of beta-D-glycosylamines.
    Sridhar PR; Prabhu KR; Chandrasekaran S
    J Org Chem; 2003 Jun; 68(13):5261-4. PubMed ID: 12816487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereoselective synthesis of 1,2-cis- and 2-deoxyglycofuranosyl azides from glycosyl halides.
    Stimac A; Kobe J
    Carbohydr Res; 2000 Nov; 329(2):317-24. PubMed ID: 11117315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoselective synthesis of N-galactofuranosyl amides.
    Nisic F; Bernardi A
    Carbohydr Res; 2011 Mar; 346(4):465-71. PubMed ID: 21272864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the origin of stereoselectivity in the synthesis of 1,2-trans glycofuranosyl azides.
    Stimac A; Kobe J
    Carbohydr Res; 2000 Feb; 324(3):149-60. PubMed ID: 10724529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the stereoselectivity of 2-azido-2-deoxygalactosyl donors: relationship to the steric factors of glycosyl acceptors.
    Kalikanda J; Li Z
    Carbohydr Res; 2011 Nov; 346(15):2380-3. PubMed ID: 21920509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General methods for the synthesis of glycopyranosyluronic acid azides.
    Ying L; Gervay-Hague J
    Carbohydr Res; 2003 Apr; 338(9):835-41. PubMed ID: 12681907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of bis(diphenylphosphino)ethane (DPPE) in Staudinger-type N-glycopyranosyl amide synthesis.
    Temelkoff DP; Smith CR; Kibler DA; McKee S; Duncan SJ; Zeller M; Hunsen M; Norris P
    Carbohydr Res; 2006 Jul; 341(10):1645-56. PubMed ID: 16499894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and transformation of glycosyl azides.
    Györgydeák Z; Thiem J
    Adv Carbohydr Chem Biochem; 2006; 60():103-82. PubMed ID: 16750443
    [No Abstract]   [Full Text] [Related]  

  • 15. Catalytic Staudinger-Vilarrasa reaction for the direct ligation of carboxylic acids and azides.
    Burés J; Martín M; Urpí F; Vilarrasa J
    J Org Chem; 2009 Mar; 74(5):2203-6. PubMed ID: 19203231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synthesis and characterization of electron-poor glycosylamines and derived glycosylamides.
    Zýka J; Prouza V; Habanová N; Pohl R; Parkan K
    Carbohydr Res; 2024 Feb; 536():109023. PubMed ID: 38242070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt(II)-catalyzed intramolecular C-H amination with phosphoryl azides: formation of 6- and 7-membered cyclophosphoramidates.
    Lu H; Tao J; Jones JE; Wojtas L; Zhang XP
    Org Lett; 2010 Mar; 12(6):1248-51. PubMed ID: 20184343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereoselective synthesis of α- and β-glycofuranosyl amides by traceless ligation of glycofuranosyl azides.
    Nisic F; Speciale G; Bernardi A
    Chemistry; 2012 May; 18(22):6895-906. PubMed ID: 22517645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu-catalyzed conversion of propargyl acetates to E-α,β-unsaturated amides via ketenimine formation with sulfonyl azides.
    Kumar YK; Ranjith Kumar G; Reddy MS
    J Org Chem; 2014 Jan; 79(2):823-8. PubMed ID: 24344764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of structurally defined scaffolds for bivalent ligand display based on glucuronic acid anilides. The degree of tertiary amide isomerism and folding depends on the configuration of a glycosyl azide.
    Tosin M; Murphy PV
    J Org Chem; 2005 May; 70(10):4107-17. PubMed ID: 15876103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.