BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10703663)

  • 1. Molecular homology and the luminal transport of Hg2+ in the renal proximal tubule.
    Cannon VT; Barfuss DW; Zalups RK
    J Am Soc Nephrol; 2000 Mar; 11(3):394-402. PubMed ID: 10703663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal organic anion transport system: a mechanism for the basolateral uptake of mercury-thiol conjugates along the pars recta of the proximal tubule.
    Zalups RK; Barfuss DW
    Toxicol Appl Pharmacol; 2002 Aug; 182(3):234-43. PubMed ID: 12183103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid transporters involved in luminal transport of mercuric conjugates of cysteine in rabbit proximal tubule.
    Cannon VT; Zalups RK; Barfuss DW
    J Pharmacol Exp Ther; 2001 Aug; 298(2):780-9. PubMed ID: 11454942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting inorganic mercury transport and toxicity in the isolated perfused proximal tubule.
    Zalups RK; Robinson MK; Barfuss DW
    J Am Soc Nephrol; 1991 Oct; 2(4):866-78. PubMed ID: 1751790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luminal transport of thiol S-conjugates of methylmercury in isolated perfused rabbit renal proximal tubules.
    Wang Y; Zalups RK; Barfuss DW
    Toxicol Lett; 2012 Sep; 213(2):203-10. PubMed ID: 22800651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compensatory Renal Hypertrophy and the Uptake of Cysteine S-Conjugates of Hg2+ in Isolated S2 Proximal Tubular Segments.
    Bridges CC; Barfuss DW; Joshee L; Zalups RK
    Toxicol Sci; 2016 Dec; 154(2):278-288. PubMed ID: 27562559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of action of 2,3-dimercaptopropane-1-sulfonate and the transport, disposition, and toxicity of inorganic mercury in isolated perfused segments of rabbit proximal tubules.
    Zalups RK; Parks LD; Cannon VT; Barfuss DW
    Mol Pharmacol; 1998 Aug; 54(2):353-63. PubMed ID: 9687577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminal and basolateral membrane transport of glutathione in isolated perfused S(1), S(2), and S(3) segments of the rabbit proximal tubule.
    Parks LD; Zalups RK; Barfuss DW
    J Am Soc Nephrol; 2000 Jun; 11(6):1008-1015. PubMed ID: 10820164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of luminal or basolateral uptake and transepithelial transport of mercury in isolated perfused proximal tubules exposed to mercury-metallothionein.
    Zalups RK; Cherian MG; Barfuss DW
    J Toxicol Environ Health; 1995 Jan; 44(1):101-13. PubMed ID: 7823324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Participation of mercuric conjugates of cysteine, homocysteine, and N-acetylcysteine in mechanisms involved in the renal tubular uptake of inorganic mercury.
    Zalups RK; Barfuss DW
    J Am Soc Nephrol; 1998 Apr; 9(4):551-61. PubMed ID: 9555656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport and toxicity of methylmercury along the proximal tubule of the rabbit.
    Zalups RK; Barfuss DW
    Toxicol Appl Pharmacol; 1993 Aug; 121(2):176-85. PubMed ID: 8346534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic anion transport and action of gamma-glutamyl transpeptidase in kidney linked mechanistically to renal tubular uptake of inorganic mercury.
    Zalups RK
    Toxicol Appl Pharmacol; 1995 Jun; 132(2):289-98. PubMed ID: 7785056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro analysis of the accumulation and toxicity of inorganic mercury in segments of the proximal tubule isolated from the rabbit kidney.
    Zalups RK; Knutson KL; Schnellmann RG
    Toxicol Appl Pharmacol; 1993 Apr; 119(2):221-7. PubMed ID: 8480331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity and transport of three synthesized mercury-thiol-complexes in isolated rabbit renal proximal tubule suspensions.
    Wei H; Qiu L; Divine KK; Ashbaugh MD; McIntyre LC; Fernando Q; Gandolfi AJ
    Drug Chem Toxicol; 1999 May; 22(2):323-41. PubMed ID: 10234470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basolateral uptake of mercuric conjugates of N-acetylcysteine and cysteine in the kidney involves the organic anion transport system.
    Zalups RK
    J Toxicol Environ Health A; 1998 Sep; 55(1):13-29. PubMed ID: 9747601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inorganic mercury transport in the proximal tubule of the rabbit.
    Barfuss DW; Robinson MK; Zalups RK
    J Am Soc Nephrol; 1990 Dec; 1(6):910-7. PubMed ID: 2103850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium transport and toxicity in isolated perfused segments of the renal proximal tubule.
    Robinson MK; Barfuss DW; Zalups RK
    Toxicol Appl Pharmacol; 1993 Jul; 121(1):103-11. PubMed ID: 8337694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of organic anion and amino acid carriers in transport of inorganic mercury in rat renal basolateral membrane vesicles: influence of compensatory renal growth.
    Lash LH; Hueni SE; Putt DA; Zalups RK
    Toxicol Sci; 2005 Dec; 88(2):630-44. PubMed ID: 16162843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of inorganic mercury along the renal proximal tubule of the rabbit.
    Zalups RK; Barfuss D
    Toxicol Appl Pharmacol; 1990 Nov; 106(2):245-53. PubMed ID: 2256114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basolateral uptake of inorganic mercury in the kidney.
    Zalups RK
    Toxicol Appl Pharmacol; 1998 Jul; 151(1):192-9. PubMed ID: 9705903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.