These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 1070411)
1. Cortically induced masticatory rhythm and its modification by tonic peripheral inputs in immolbilized cats. Nakamura Y; Kubo Y; Nozaki S; Takatori M Bull Tokyo Med Dent Univ; 1976 Jun; 23(2):101-7. PubMed ID: 1070411 [TBL] [Abstract][Full Text] [Related]
2. The role of medial bulbar reticular neurons in the orbital cortically induced masticatory rhythm in cats. Nakamura Y; Enomoto S; Kato M Brain Res; 1980 Nov; 202(1):207-12. PubMed ID: 7427737 [TBL] [Abstract][Full Text] [Related]
3. Localization of central rhythm generator involved in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig. Nozaki S; Iriki A; Nakamura Y J Neurophysiol; 1986 Apr; 55(4):806-25. PubMed ID: 3517246 [TBL] [Abstract][Full Text] [Related]
4. [Modulation of the jaw muscle activity during the rhythmical jaw movement by stimulation of the cortical masticatory area and amygdala in the rabbit]. Furuta A; Murakami T Shigaku; 1989 Aug; 77(2):607-17. PubMed ID: 2489314 [TBL] [Abstract][Full Text] [Related]
5. Generation of rhythmical ingestive activities of the trigeminal, facial, and hypoglossal motoneurons in in vitro CNS preparations isolated from rats and mice. Nakamura Y; Katakura N; Nakajima M J Med Dent Sci; 1999 Jun; 46(2):63-73. PubMed ID: 10805320 [TBL] [Abstract][Full Text] [Related]
6. Modulation of cortically induced rhythmical jaw movements by stimulation of the red nucleus in the rat. Satoh Y; Ishizuka K; Murakami T Brain Res; 2006 May; 1087(1):114-22. PubMed ID: 16616053 [TBL] [Abstract][Full Text] [Related]
7. Synaptic basis of orbital cortically induced rhythmical masticatory activity of trigeminal motoneurons in immobilized cats. Kubo Y; Enomoto S; Nakamura Y Brain Res; 1981 Dec; 230(1-2):97-110. PubMed ID: 7317793 [TBL] [Abstract][Full Text] [Related]
8. [A comparative study between cortically induced fictive mastication and actual mastication in acute and chronic rabbits]. Liu ZJ; Wang HY Zhonghua Kou Qiang Yi Xue Za Zhi; 1994 Sep; 29(5):305-8, 320. PubMed ID: 7743868 [TBL] [Abstract][Full Text] [Related]
9. Intracellular analysis of trigeminal motoneuron rhythmical activity during stimulation of pontomedullary reticular formation in anesthetized guinea pig. Gurahian SM; Chandler SH; Goldberg LJ J Neurophysiol; 1989 Dec; 62(6):1225-36. PubMed ID: 2600621 [TBL] [Abstract][Full Text] [Related]
10. Cortically induced masticatory rhythm in masseter motoneurons after blocking inhibition by strychnine and tetanus toxin. Enomoto S; Katakura N; Sunada T; Katayama T; Hirose Y; Ishiwata Y; Nakamura Y Neurosci Res; 1987 Jun; 4(5):396-412. PubMed ID: 3670746 [TBL] [Abstract][Full Text] [Related]
11. [Reset of masticatory rhythm evoked by stimulation of the cortical masticatory area]. Murakami T; Furuta A; Iwama M; Ishizuka K; Suzuki Y Shigaku; 1989 Jun; 77(1):276-83. PubMed ID: 2637425 [TBL] [Abstract][Full Text] [Related]
12. Role of corticobulbar projection neurons in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig. Nozaki S; Iriki A; Nakamura Y J Neurophysiol; 1986 Apr; 55(4):826-45. PubMed ID: 3517247 [TBL] [Abstract][Full Text] [Related]
13. Facilitatory effect of lingual nerve stimulation on masseteric EMG Activities of the cat. Morimoto T; Mauderli A; Schärer Helv Odontol Acta; 1975 Oct; 19(2):85-91. PubMed ID: 1225876 [TBL] [Abstract][Full Text] [Related]
14. Topographical distribution and functional properties of cortically induced rhythmical jaw movements in the monkey (Macaca fascicularis). Huang CS; Hiraba H; Murray GM; Sessle BJ J Neurophysiol; 1989 Mar; 61(3):635-50. PubMed ID: 2709104 [TBL] [Abstract][Full Text] [Related]
15. Generation of masticatory rhythm in the brainstem. Nakamura Y; Katakura N Neurosci Res; 1995 Aug; 23(1):1-19. PubMed ID: 7501294 [TBL] [Abstract][Full Text] [Related]
16. [A role of periodontal afferents in the control of jaw-closing muscle activities]. Saito O Osaka Daigaku Shigaku Zasshi; 1990 Jun; 35(1):268-86. PubMed ID: 2135408 [TBL] [Abstract][Full Text] [Related]
17. Mastication-induced modulation of the jaw-opening reflex during different periods of mastication in awake rabbits. Mostafeezur R; Yamamura K; Kurose M; Yamada Y Brain Res; 2009 Feb; 1254():28-37. PubMed ID: 19094972 [TBL] [Abstract][Full Text] [Related]
18. Putative feed-forward control of jaw-closing muscle activity during rhythmic jaw movements in the anesthetized rabbit. Komuro A; Morimoto T; Iwata K; Inoue T; Masuda Y; Kato T; Hidaka O J Neurophysiol; 2001 Dec; 86(6):2834-44. PubMed ID: 11731540 [TBL] [Abstract][Full Text] [Related]
19. Regulation of masticatory force during cortically induced rhythmic jaw movements in the anesthetized rabbit. Hidaka O; Morimoto T; Masuda Y; Kato T; Matsuo R; Inoue T; Kobayashi M; Takada K J Neurophysiol; 1997 Jun; 77(6):3168-79. PubMed ID: 9212266 [TBL] [Abstract][Full Text] [Related]
20. Synaptic bases of cortically-induced rhythmical hypoglossal motoneuronal activity in the cat. Sahara Y; Hashimoto N; Kato M; Nakamura Y Neurosci Res; 1988 Jun; 5(5):439-52. PubMed ID: 3399148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]