These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10704229)

  • 21. EPR and X-ray crystallographic characterization of the product-bound form of the MnII-loaded methionyl aminopeptidase from Pyrococcus furiosus.
    Copik AJ; Nocek BP; Swierczek SI; Ruebush S; Jang SB; Meng L; D'souza VM; Peters JW; Bennett B; Holz RC
    Biochemistry; 2005 Jan; 44(1):121-9. PubMed ID: 15628852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low concentrations of sodium dodecyl sulfate induce the extension of beta 2-microglobulin-related amyloid fibrils at a neutral pH.
    Yamamoto S; Hasegawa K; Yamaguchi I; Tsutsumi S; Kardos J; Goto Y; Gejyo F; Naiki H
    Biochemistry; 2004 Aug; 43(34):11075-82. PubMed ID: 15323566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amyloid-like fibril formation of co-chaperonin GroES: nucleation and extension prefer different degrees of molecular compactness.
    Higurashi T; Yagi H; Mizobata T; Kawata Y
    J Mol Biol; 2005 Sep; 351(5):1057-69. PubMed ID: 16054644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amyloid fibril formation of the mouse V(L) domain at acidic pH.
    Martsev SP; Dubnovitsky AP; Vlasov AP; Hoshino M; Hasegawa K; Naiki H; Goto Y
    Biochemistry; 2002 Mar; 41(10):3389-95. PubMed ID: 11876647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain.
    Zurdo J; Guijarro JI; Jiménez JL; Saibil HR; Dobson CM
    J Mol Biol; 2001 Aug; 311(2):325-40. PubMed ID: 11478864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amyloid-like fibril formation in an all beta-barrel protein involves the formation of partially structured intermediate(s).
    Srisailam S; Wang HM; Kumar TK; Rajalingam D; Sivaraja V; Sheu HS; Chang YC; Yu C
    J Biol Chem; 2002 May; 277(21):19027-36. PubMed ID: 11877422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid.
    Conway KA; Harper JD; Lansbury PT
    Biochemistry; 2000 Mar; 39(10):2552-63. PubMed ID: 10704204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Partially unfolded states of beta(2)-microglobulin and amyloid formation in vitro.
    McParland VJ; Kad NM; Kalverda AP; Brown A; Kirwin-Jones P; Hunter MG; Sunde M; Radford SE
    Biochemistry; 2000 Aug; 39(30):8735-46. PubMed ID: 10913285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A systematic investigation into the effect of protein destabilisation on beta 2-microglobulin amyloid formation.
    Smith DP; Jones S; Serpell LC; Sunde M; Radford SE
    J Mol Biol; 2003 Jul; 330(5):943-54. PubMed ID: 12860118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transthyretin forms amyloid fibrils at physiological pH with ultrasonication.
    Misumi Y; Ueda M; Fujimori H; Shinriki S; Meng W; Kim J; Saito S; Obayashi K; Uchino M; Ando Y
    Amyloid; 2008 Dec; 15(4):234-9. PubMed ID: 19065294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamic basis for the stabilities of three CutA1s from Pyrococcus horikoshii,Thermus thermophilus, and Oryza sativa, with unusually high denaturation temperatures.
    Sawano M; Yamamoto H; Ogasahara K; Kidokoro S; Katoh S; Ohnuma T; Katoh E; Yokoyama S; Yutani K
    Biochemistry; 2008 Jan; 47(2):721-30. PubMed ID: 18154307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The monomer-seed interaction mechanism in the formation of the β2-microglobulin amyloid fibril clarified by solution NMR techniques.
    Yanagi K; Sakurai K; Yoshimura Y; Konuma T; Lee YH; Sugase K; Ikegami T; Naiki H; Goto Y
    J Mol Biol; 2012 Sep; 422(3):390-402. PubMed ID: 22683352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants.
    Morozova-Roche LA; Zurdo J; Spencer A; Noppe W; Receveur V; Archer DB; Joniau M; Dobson CM
    J Struct Biol; 2000 Jun; 130(2-3):339-51. PubMed ID: 10940237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro.
    Kayed R; Bernhagen J; Greenfield N; Sweimeh K; Brunner H; Voelter W; Kapurniotu A
    J Mol Biol; 1999 Apr; 287(4):781-96. PubMed ID: 10191146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Searching for conditions to form stable protein oligomers with amyloid-like characteristics: The unexplored basic pH.
    Ahmad B; Winkelmann J; Tiribilli B; Chiti F
    Biochim Biophys Acta; 2010 Jan; 1804(1):223-34. PubMed ID: 19836473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetically controlled refolding of a heat-denatured hyperthermostable protein.
    Koutsopoulos S; van der Oost J; Norde W
    FEBS J; 2007 Nov; 274(22):5915-23. PubMed ID: 17944946
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methionine oxidation induces amyloid fibril formation by full-length apolipoprotein A-I.
    Wong YQ; Binger KJ; Howlett GJ; Griffin MD
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):1977-82. PubMed ID: 20133843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Higher-order molecular packing in amyloid-like fibrils constructed with linear arrangements of hydrophobic and hydrogen-bonding side-chains.
    Saiki M; Honda S; Kawasaki K; Zhou D; Kaito A; Konakahara T; Morii H
    J Mol Biol; 2005 May; 348(4):983-98. PubMed ID: 15843028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analyzing the binding of Co(II)-specific inhibitors to the methionyl aminopeptidases from Escherichia coli and Pyrococcus furiosus.
    Mitra S; Sheppard G; Wang J; Bennett B; Holz RC
    J Biol Inorg Chem; 2009 May; 14(4):573-85. PubMed ID: 19198897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.