These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 10704507)

  • 1. Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds.
    Theunissen FE; Sen K; Doupe AJ
    J Neurosci; 2000 Mar; 20(6):2315-31. PubMed ID: 10704507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capturing contextual effects in spectro-temporal receptive fields.
    Westö J; May PJ
    Hear Res; 2016 Sep; 339():195-210. PubMed ID: 27473504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex.
    Laudanski J; Edeline JM; Huetz C
    PLoS One; 2012; 7(11):e50539. PubMed ID: 23209771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustained firing of model central auditory neurons yields a discriminative spectro-temporal representation for natural sounds.
    Carlin MA; Elhilali M
    PLoS Comput Biol; 2013; 9(3):e1002982. PubMed ID: 23555217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature analysis of natural sounds in the songbird auditory forebrain.
    Sen K; Theunissen FE; Doupe AJ
    J Neurophysiol; 2001 Sep; 86(3):1445-58. PubMed ID: 11535690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli.
    Theunissen FE; David SV; Singh NC; Hsu A; Vinje WE; Gallant JL
    Network; 2001 Aug; 12(3):289-316. PubMed ID: 11563531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrast tuned responses in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Eur J Neurosci; 2012 Feb; 35(4):550-61. PubMed ID: 22321018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed inhibition in cortical receptive fields and the discrimination of complex stimuli.
    Narayan R; Ergün A; Sen K
    J Neurophysiol; 2005 Oct; 94(4):2970-5. PubMed ID: 15917327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.
    Calabrese A; Schumacher JW; Schneider DM; Paninski L; Woolley SM
    PLoS One; 2011 Jan; 6(1):e16104. PubMed ID: 21264310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dynamic network model of temporal receptive fields in primary auditory cortex.
    Rahman M; Willmore BDB; King AJ; Harper NS
    PLoS Comput Biol; 2019 May; 15(5):e1006618. PubMed ID: 31059503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Essential Complexity of Auditory Receptive Fields.
    Thorson IL; Liénard J; David SV
    PLoS Comput Biol; 2015 Dec; 11(12):e1004628. PubMed ID: 26683490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General properties of auditory spectro-temporal receptive fields.
    Mahajan NR; Mesgarani N; Hermansky H
    J Acoust Soc Am; 2019 Dec; 146(6):EL459. PubMed ID: 31893764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
    Christianson GB; Sahani M; Linden JF
    J Neurosci; 2008 Jan; 28(2):446-55. PubMed ID: 18184787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex.
    Klein DJ; Simon JZ; Depireux DA; Shamma SA
    J Comput Neurosci; 2006 Apr; 20(2):111-36. PubMed ID: 16518572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimuli.
    David SV; Mesgarani N; Fritz JB; Shamma SA
    J Neurosci; 2009 Mar; 29(11):3374-86. PubMed ID: 19295144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-correlation and joint spectro-temporal receptive field properties in auditory cortex.
    Tomita M; Eggermont JJ
    J Neurophysiol; 2005 Jan; 93(1):378-92. PubMed ID: 15342718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Context dependence of spectro-temporal receptive fields with implications for neural coding.
    Eggermont JJ
    Hear Res; 2011 Jan; 271(1-2):123-32. PubMed ID: 20123121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain.
    Woolley SM; Gill PR; Theunissen FE
    J Neurosci; 2006 Mar; 26(9):2499-512. PubMed ID: 16510728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of Multidimensional Receptive Fields in Core Rat Auditory Cortex Directed by Sound Statistics.
    Homma NY; Atencio CA; Schreiner CE
    Neuroscience; 2021 Jul; 467():150-170. PubMed ID: 33951506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How do auditory cortex neurons represent communication sounds?
    Gaucher Q; Huetz C; Gourévitch B; Laudanski J; Occelli F; Edeline JM
    Hear Res; 2013 Nov; 305():102-12. PubMed ID: 23603138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.