These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
792 related articles for article (PubMed ID: 10704545)
1. Comparison of long-term variability for standard and short-wavelength automated perimetry in stable glaucoma patients. Blumenthal EZ; Sample PA; Zangwill L; Lee AC; Kono Y; Weinreb RN Am J Ophthalmol; 2000 Mar; 129(3):309-13. PubMed ID: 10704545 [TBL] [Abstract][Full Text] [Related]
2. Short wavelength automated perimetry, frequency doubling technology perimetry, and pattern electroretinography for prediction of progressive glaucomatous standard visual field defects. Bayer AU; Erb C Ophthalmology; 2002 May; 109(5):1009-17. PubMed ID: 11986111 [TBL] [Abstract][Full Text] [Related]
3. Detection of optic neuropathy in glaucomatous eyes with normal standard visual fields using a test battery of short-wavelength automated perimetry and pattern electroretinography. Bayer AU; Maag KP; Erb C Ophthalmology; 2002 Jul; 109(7):1350-61. PubMed ID: 12093662 [TBL] [Abstract][Full Text] [Related]
4. Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry. Wall M; Woodward KR; Doyle CK; Artes PH Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):974-9. PubMed ID: 18952921 [TBL] [Abstract][Full Text] [Related]
5. Relationship between parapapillary atrophy and visual field abnormality in primary open-angle glaucoma. Kono Y; Zangwill L; Sample PA; Jonas JB; Emdadi A; Gupta N; Weinreb RN Am J Ophthalmol; 1999 Jun; 127(6):674-80. PubMed ID: 10372877 [TBL] [Abstract][Full Text] [Related]
6. Relationship between visual field testing and scanning laser polarimetry in patients with a large cup-to-disk ratio. Tannenbaum DP; Zangwill LM; Bowd C; Sample PA; Weinreb RN Am J Ophthalmol; 2001 Oct; 132(4):501-6. PubMed ID: 11589870 [TBL] [Abstract][Full Text] [Related]
7. Frequency doubling technology for earlier detection of functional damage in standard automated perimetry-normal hemifield in glaucoma with low-to-normal pressure. Nakagawa S; Murata H; Saito H; Nakahara H; Mataki N; Tomidokoro A; Iwase A; Araie M J Glaucoma; 2012 Jan; 21(1):22-6. PubMed ID: 21543995 [TBL] [Abstract][Full Text] [Related]
8. Short-wavelength automated perimetry can predict glaucomatous standard visual field loss by ten years. Sit AJ; Medeiros FA; Weinreb RN Semin Ophthalmol; 2004; 19(3-4):122-4. PubMed ID: 15590553 [TBL] [Abstract][Full Text] [Related]
9. Test-retest variability of frequency-doubling perimetry and conventional perimetry in glaucoma patients and normal subjects. Chauhan BC; Johnson CA Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):648-56. PubMed ID: 10067968 [TBL] [Abstract][Full Text] [Related]
10. Relationship between Humphrey 30-2 SITA Standard Test, Matrix 30-2 threshold test, and Heidelberg retina tomograph in ocular hypertensive and glaucoma patients. Bozkurt B; Yilmaz PT; Irkec M J Glaucoma; 2008; 17(3):203-10. PubMed ID: 18414106 [TBL] [Abstract][Full Text] [Related]
11. Intraocular pressure and progression of glaucomatous visual field loss. Martínez-Belló C; Chauhan BC; Nicolela MT; McCormick TA; LeBlanc RP Am J Ophthalmol; 2000 Mar; 129(3):302-8. PubMed ID: 10704544 [TBL] [Abstract][Full Text] [Related]
12. Short-wavelength automated perimetry in neuro-ophthalmologic disorders. Keltner JL; Johnson CA Arch Ophthalmol; 1995 Apr; 113(4):475-81. PubMed ID: 7710398 [TBL] [Abstract][Full Text] [Related]
13. Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma? Ferreras A; Polo V; Larrosa JM; Pablo LE; Pajarin AB; Pueyo V; Honrubia FM J Glaucoma; 2007; 16(4):372-83. PubMed ID: 17571000 [TBL] [Abstract][Full Text] [Related]
14. Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Sample PA; Bosworth CF; Blumenthal EZ; Girkin C; Weinreb RN Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1783-90. PubMed ID: 10845599 [TBL] [Abstract][Full Text] [Related]
15. Flicker-defined form perimetry in glaucoma patients. Horn FK; Kremers J; Mardin CY; Jünemann AG; Adler W; Tornow RP Graefes Arch Clin Exp Ophthalmol; 2015 Mar; 253(3):447-55. PubMed ID: 25511293 [TBL] [Abstract][Full Text] [Related]
16. Short-wavelength automated perimetry and motion automated perimetry in patients with glaucoma. Sample PA; Bosworth CF; Weinreb RN Arch Ophthalmol; 1997 Sep; 115(9):1129-33. PubMed ID: 9298053 [TBL] [Abstract][Full Text] [Related]
17. Detecting early to mild glaucomatous damage: a comparison of the multifocal VEP and automated perimetry. Hood DC; Thienprasiddhi P; Greenstein VC; Winn BJ; Ohri N; Liebmann JM; Ritch R Invest Ophthalmol Vis Sci; 2004 Feb; 45(2):492-8. PubMed ID: 14744890 [TBL] [Abstract][Full Text] [Related]
18. Short-wavelength automated perimetry and standard perimetry in the detection of progressive optic disc cupping. Girkin CA; Emdadi A; Sample PA; Blumenthal EZ; Lee AC; Zangwill LM; Weinreb RN Arch Ophthalmol; 2000 Sep; 118(9):1231-6. PubMed ID: 10980768 [TBL] [Abstract][Full Text] [Related]
19. Automated flicker perimetry in glaucoma using Octopus 311: a comparative study with the Humphrey Matrix. Matsumoto C; Takada S; Okuyama S; Arimura E; Hashimoto S; Shimomura Y Acta Ophthalmol Scand; 2006 Apr; 84(2):210-5. PubMed ID: 16637839 [TBL] [Abstract][Full Text] [Related]
20. Short-wavelength automated perimetry and neuroretinal rim area. Larrosa JM; Polo V; Pablo L; Pinilla I; Fernandez FJ; Honrubia FM Eur J Ophthalmol; 2000; 10(2):116-20. PubMed ID: 10887921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]