BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10704786)

  • 21. Role and regulation of p53 in depolarization-induced neuronal death.
    Jordán J; Galindo MF; González-García C; Ceña V
    Neuroscience; 2003; 122(3):707-15. PubMed ID: 14622914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trimethyltin and triethyltin differentially induce spontaneous noradrenaline release from rat hippocampal slices.
    Gassó S; Sanfeliu C; Suñol C; Rodríguez-Farré E; Cristòfol RM
    Toxicol Appl Pharmacol; 2000 Feb; 162(3):189-96. PubMed ID: 10652247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 1,2-bis(2-Aminophenoxy)ethane-N,N,N',N'-tetraacetic acid induces caspase-mediated apoptosis and reactive oxygen species-mediated necrosis in cultured cortical neurons.
    Han KS; Kang HJ; Kim EY; Yoon WJ; Sohn S; Kwon HJ; Gwag BJ
    J Neurochem; 2001 Jul; 78(2):230-9. PubMed ID: 11461958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Short- and long-term differential effects of neuroprotective drug NS-7 on voltage-dependent sodium channels in adrenal chromaffin cells.
    Yokoo H; Shiraishi S; Kobayashi H; Yanagita T; Minami S; Yamamoto R; Wada A
    Br J Pharmacol; 2000 Oct; 131(4):779-87. PubMed ID: 11030728
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ca2+-mediated neuronal death in rat brain neuronal cultures by veratridine: protection by flunarizine.
    Pauwels PJ; Van Assouw HP; Leysen JE; Janssen PA
    Mol Pharmacol; 1989 Oct; 36(4):525-31. PubMed ID: 2554110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nav1.7 sodium channel-induced Ca2+ influx decreases tau phosphorylation via glycogen synthase kinase-3beta in adrenal chromaffin cells.
    Kanai T; Nemoto T; Yanagita T; Maruta T; Satoh S; Yoshikawa N; Wada A
    Neurochem Int; 2009 Jul; 54(8):497-505. PubMed ID: 19428794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Na+ influx through Ca2+ channels can promote striatal GABA efflux in Ca(2+)-deficient conditions in response to electrical field depolarization.
    Bernath S; Zigmond MJ; Nisenbaum ES; Vizi ES; Berger TW
    Brain Res; 1993 Dec; 632(1-2):232-8. PubMed ID: 8149231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of besipirdine at the voltage-dependent sodium channel.
    Tang L; Smith CP; Huger FP; Kongsamut S
    Br J Pharmacol; 1995 Nov; 116(5):2468-72. PubMed ID: 8581286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Donepezil attenuates excitotoxic damage induced by membrane depolarization of cortical neurons exposed to veratridine.
    Akasofu S; Sawada K; Kosasa T; Hihara H; Ogura H; Akaike A
    Eur J Pharmacol; 2008 Jul; 588(2-3):189-97. PubMed ID: 18508044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading.
    Haigney MC; Lakatta EG; Stern MD; Silverman HS
    Circulation; 1994 Jul; 90(1):391-9. PubMed ID: 8026023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of increased extracellular potassium on influx of sodium ions in cultured rat astroglia and neurons.
    Takahashi S; Shibata M; Fukuuchi Y
    Brain Res Dev Brain Res; 1997 Dec; 104(1-2):111-7. PubMed ID: 9466713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Up-regulation of cell surface sodium channels by cyclosporin A, FK506, and rapamycin in adrenal chromaffin cells.
    Shiraishi S; Yanagita T; Kobayashi H; Uezono Y; Yokoo H; Minami SI; Takasaki M; Wada A
    J Pharmacol Exp Ther; 2001 May; 297(2):657-65. PubMed ID: 11303055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The functional significance of sodium channels in pancreatic beta-cell membranes.
    Donatsch P; Lowe DA; Richardson BP; Taylor P
    J Physiol; 1977 May; 267(2):357-76. PubMed ID: 327058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of voltage-sensitive sodium channels during oxygen deprivation leads to apoptotic neuronal death.
    Banasiak KJ; Burenkova O; Haddad GG
    Neuroscience; 2004; 126(1):31-44. PubMed ID: 15145071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of the epithelial Na(+) channel by extracellular acidification.
    Awayda MS; Boudreaux MJ; Reger RL; Hamm LL
    Am J Physiol Cell Physiol; 2000 Dec; 279(6):C1896-905. PubMed ID: 11078705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pharmacological characterization of Na+ influx via voltage-gated Na+ channels in spinal cord astrocytes.
    Rose CR; Ransom BR; Waxman SG
    J Neurophysiol; 1997 Dec; 78(6):3249-58. PubMed ID: 9405543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sodium and calcium fluxes in a clonal nerve cell line.
    Stallcup WB
    J Physiol; 1979 Jan; 286():525-40. PubMed ID: 571466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inactivation properties of human recombinant class E calcium channels.
    Jouvenceau A; Giovannini F; Bath CP; Trotman E; Sher E
    J Neurophysiol; 2000 Feb; 83(2):671-84. PubMed ID: 10669483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glycine release provoked by disturbed Na⁺, Na⁺ and Ca²⁺ homeostasis in cerebellar nerve endings: roles of Ca²⁺ channels, Na⁺/Ca²⁺ exchangers and GlyT2 transporter reversal.
    Romei C; Di Prisco S; Raiteri M; Raiteri L
    J Neurochem; 2011 Oct; 119(1):50-63. PubMed ID: 21790607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Na+-dependent sources of intra-axonal Ca2+ release in rat optic nerve during in vitro chemical ischemia.
    Nikolaeva MA; Mukherjee B; Stys PK
    J Neurosci; 2005 Oct; 25(43):9960-7. PubMed ID: 16251444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.