BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 10706589)

  • 1. Interaction of locust apolipophorin III with lipoproteins and phospholipid vesicles: effect of glycosylation.
    Weers PM; Van Der Horst DJ; Ryan RO
    J Lipid Res; 2000 Mar; 41(3):416-23. PubMed ID: 10706589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apolipophorin III: a lipid-triggered molecular switch.
    Weers PM; Ryan RO
    Insect Biochem Mol Biol; 2003 Dec; 33(12):1249-60. PubMed ID: 14599497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid-triggered conformational switch of apolipophorin III helix bundle to an extended helix organization.
    Sahoo D; Weers PM; Ryan RO; Narayanaswami V
    J Mol Biol; 2002 Aug; 321(2):201-14. PubMed ID: 12144779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational changes of an exchangeable apolipoprotein, apolipophorin III from Locusta migratoria, at low pH: correlation with lipid binding.
    Weers PM; Kay CM; Ryan RO
    Biochemistry; 2001 Jun; 40(25):7754-60. PubMed ID: 11412130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence studies of exchangeable apolipoprotein-lipid interactions. Superficial association of apolipophorin III with lipoprotein surfaces.
    Sahoo D; Narayanaswami V; Kay CM; Ryan RO
    J Biol Chem; 1998 Jan; 273(3):1403-8. PubMed ID: 9430675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of an exchangeable apolipoprotein with phospholipid vesicles and lipoprotein particles. Role of leucines 32, 34, and 95 in Locusta migratoria apolipophorin III.
    Weers PM; Narayanaswami V; Kay CM; Ryan RO
    J Biol Chem; 1999 Jul; 274(31):21804-10. PubMed ID: 10419496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disulfide bond engineering to monitor conformational opening of apolipophorin III during lipid binding.
    Narayanaswami V; Wang J; Kay CM; Scraba DG; Ryan RO
    J Biol Chem; 1996 Oct; 271(43):26855-62. PubMed ID: 8900168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting the stability and conformation of Locusta migratoria apolipophorin III.
    Weers PM; Kay CM; Oikawa K; Wientzek M; Van der Horst DJ; Ryan RO
    Biochemistry; 1994 Mar; 33(12):3617-24. PubMed ID: 8142360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR solution structure and dynamics of an exchangeable apolipoprotein, Locusta migratoria apolipophorin III.
    Fan D; Zheng Y; Yang D; Wang J
    J Biol Chem; 2003 Jun; 278(23):21212-20. PubMed ID: 12621043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of buried polar residues in helix bundle stability and lipid binding of apolipophorin III: destabilization by threonine 31.
    Weers PM; Abdullahi WE; Cabrera JM; Hsu TC
    Biochemistry; 2005 Jun; 44(24):8810-6. PubMed ID: 15952787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of glycosylation in the lipid-binding activity of the exchangeable apolipoprotein, apolipophorin-III.
    Soulages JL; Pennington J; Bendavid O; Wells MA
    Biochem Biophys Res Commun; 1998 Feb; 243(2):372-6. PubMed ID: 9480816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of insect apolipophorin III to dimyristoylphosphatidylcholine vesicles. Evidence for a conformational change.
    Wientzek M; Kay CM; Oikawa K; Ryan RO
    J Biol Chem; 1994 Feb; 269(6):4605-12. PubMed ID: 8308032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular trigger of lipid binding-induced opening of a helix bundle exchangeable apolipoprotein.
    Narayanaswami V; Wang J; Schieve D; Kay CM; Ryan RO
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4366-71. PubMed ID: 10200268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An N-terminal three-helix fragment of the exchangeable insect apolipoprotein apolipophorin III conserves the lipid binding properties of wild-type protein.
    Dettloff M; Weers PM; Niere M; Kay CM; Ryan RO; Wiesner A
    Biochemistry; 2001 Mar; 40(10):3150-7. PubMed ID: 11258930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apolipophorin III interaction with phosphatidylglycerol and lipopolysaccharide: A potential mechanism for antimicrobial activity.
    Maravilla E; Le DP; Tran JJ; Chiu MH; Prenner EJ; Weers PMM
    Chem Phys Lipids; 2020 Jul; 229():104909. PubMed ID: 32209325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of helices and loops in the ability of apolipophorin-III to interact with native lipoproteins and form discoidal lipoprotein complexes.
    Chetty PS; Arrese EL; Rodriguez V; Soulages JL
    Biochemistry; 2003 Dec; 42(51):15061-7. PubMed ID: 14690415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic and lipid binding studies on the amino and carboxyl terminal fragments of Locusta migratoria apolipophorin III.
    Narayanaswami V; Weers PM; Bogerd J; Kooiman FP; Kay CM; Scraba DG; Van der Horst DJ; Ryan RO
    Biochemistry; 1995 Sep; 34(37):11822-30. PubMed ID: 7547916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic characterization of the conformational adaptability of Bombyx mori apolipophorin III.
    Narayanaswami V; Yamauchi Y; Weers PM; Maekawa H; Sato R; Tsuchida K; Oikawa K; Kay CM; Ryan RO
    Eur J Biochem; 2000 Feb; 267(3):728-36. PubMed ID: 10651809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insect apolipophorin III: interaction of locust apolipophorin III with diacylglycerol.
    Demel RA; Van Doorn JM; Van der Horst DJ
    Biochim Biophys Acta; 1992 Mar; 1124(2):151-8. PubMed ID: 1543737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III.
    Sahoo D; Narayanaswami V; Kay CM; Ryan RO
    Biochemistry; 2000 Jun; 39(22):6594-601. PubMed ID: 10828977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.