BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 10706671)

  • 1. Cutting edge: WIP, a binding partner for Wiskott-Aldrich syndrome protein, cooperates with Vav in the regulation of T cell activation.
    Savoy DN; Billadeau DD; Leibson PJ
    J Immunol; 2000 Mar; 164(6):2866-70. PubMed ID: 10706671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-function analysis of the WIP role in T cell receptor-stimulated NFAT activation: evidence that WIP-WASP dissociation is not required and that the WIP NH2 terminus is inhibitory.
    Dong X; Patino-Lopez G; Candotti F; Shaw S
    J Biol Chem; 2007 Oct; 282(41):30303-10. PubMed ID: 17711847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site.
    Zeng R; Cannon JL; Abraham RT; Way M; Billadeau DD; Bubeck-Wardenberg J; Burkhardt JK
    J Immunol; 2003 Aug; 171(3):1360-8. PubMed ID: 12874226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Requirement for a complex of Wiskott-Aldrich syndrome protein (WASP) with WASP interacting protein in podosome formation in macrophages.
    Tsuboi S
    J Immunol; 2007 Mar; 178(5):2987-95. PubMed ID: 17312144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations that cause the Wiskott-Aldrich syndrome impair the interaction of Wiskott-Aldrich syndrome protein (WASP) with WASP interacting protein.
    Stewart DM; Tian L; Nelson DL
    J Immunol; 1999 Apr; 162(8):5019-24. PubMed ID: 10202051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WIP is a chaperone for Wiskott-Aldrich syndrome protein (WASP).
    de la Fuente MA; Sasahara Y; Calamito M; Antón IM; Elkhal A; Gallego MD; Suresh K; Siminovitch K; Ochs HD; Anderson KC; Rosen FS; Geha RS; Ramesh N
    Proc Natl Acad Sci U S A; 2007 Jan; 104(3):926-31. PubMed ID: 17213309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FLI1 Induces Megakaryopoiesis Gene Expression Through WAS/WIP-Dependent and Independent Mechanisms; Implications for Wiskott-Aldrich Syndrome.
    Wang C; Sample KM; Gajendran B; Kapranov P; Liu W; Hu A; Zacksenhaus E; Li Y; Hao X; Ben-David Y
    Front Immunol; 2021; 12():607836. PubMed ID: 33717090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The expression of Wiskott-Aldrich syndrome protein (WASP) is dependent on WASP-interacting protein (WIP).
    Konno A; Kirby M; Anderson SA; Schwartzberg PL; Candotti F
    Int Immunol; 2007 Feb; 19(2):185-92. PubMed ID: 17205972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A peptide derived from the Wiskott-Aldrich syndrome (WAS) protein-interacting protein (WIP) restores WAS protein level and actin cytoskeleton reorganization in lymphocytes from patients with WAS mutations that disrupt WIP binding.
    Massaad MJ; Ramesh N; Le Bras S; Giliani S; Notarangelo LD; Al-Herz W; Notarangelo LD; Geha RS
    J Allergy Clin Immunol; 2011 Apr; 127(4):998-1005.e1-2. PubMed ID: 21376381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wiskott-Aldrich Syndrome causing mutation, Pro373Ser restricts conformational changes essential for WASP activity in T-cells.
    Jain N; George B; Thanabalu T
    Biochim Biophys Acta; 2014 Apr; 1842(4):623-34. PubMed ID: 24440360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two novel mutations of Wiskott-Aldrich syndrome: the molecular prediction of interaction between the mutated WASP L101P with WASP-interacting protein by molecular modeling.
    Kim MK; Kim ES; Kim DS; Choi IH; Moon T; Yoon CN; Shin JS
    Biochim Biophys Acta; 2004 Oct; 1690(2):134-40. PubMed ID: 15469902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation.
    Sasahara Y; Rachid R; Byrne MJ; de la Fuente MA; Abraham RT; Ramesh N; Geha RS
    Mol Cell; 2002 Dec; 10(6):1269-81. PubMed ID: 12504004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific subdomains of Vav differentially affect T cell and NK cell activation.
    Billadeau DD; Mackie SM; Schoon RA; Leibson PJ
    J Immunol; 2000 Apr; 164(8):3971-81. PubMed ID: 10754287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WIP, a protein associated with wiskott-aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells.
    Ramesh N; Antón IM; Hartwig JH; Geha RS
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14671-6. PubMed ID: 9405671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for Wiskott-Aldrich syndrome protein in T-cell receptor-mediated transcriptional activation independent of actin polymerization.
    Silvin C; Belisle B; Abo A
    J Biol Chem; 2001 Jun; 276(24):21450-7. PubMed ID: 11283014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WIP remodeling actin behind the scenes: how WIP reshapes immune and other functions.
    Noy E; Fried S; Matalon O; Barda-Saad M
    Int J Mol Sci; 2012; 13(6):7629-7647. PubMed ID: 22837718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WASP-WIP complex in the molecular pathogenesis of Wiskott-Aldrich syndrome.
    Sasahara Y
    Pediatr Int; 2016 Jan; 58(1):4-7. PubMed ID: 26331277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defective nuclear translocation of nuclear factor of activated T cells and extracellular signal-regulated kinase underlies deficient IL-2 gene expression in Wiskott-Aldrich syndrome.
    Cianferoni A; Massaad M; Feske S; de la Fuente MA; Gallego L; Ramesh N; Geha RS
    J Allergy Clin Immunol; 2005 Dec; 116(6):1364-71. PubMed ID: 16337472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells.
    Krawczyk C; Bachmaier K; Sasaki T; Jones RG; Snapper SB; Bouchard D; Kozieradzki I; Ohashi PS; Alt FW; Penninger JM
    Immunity; 2000 Oct; 13(4):463-73. PubMed ID: 11070165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Wiskott-Aldrich syndrome protein regulates nuclear translocation of NFAT2 and NF-kappa B (RelA) independently of its role in filamentous actin polymerization and actin cytoskeletal rearrangement.
    Huang W; Ochs HD; Dupont B; Vyas YM
    J Immunol; 2005 Mar; 174(5):2602-11. PubMed ID: 15728466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.