These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 10707019)
1. Validation of excised bovine nasal mucosa as in vitro model to study drug transport and metabolic pathways in nasal epithelium. Schmidt MC; Simmen D; Hilbe M; Boderke P; Ditzinger G; Sandow J; Lang S; Rubas W; Merkle HP J Pharm Sci; 2000 Mar; 89(3):396-407. PubMed ID: 10707019 [TBL] [Abstract][Full Text] [Related]
2. Transport and metabolic pathway of thymocartin (TP4) in excised bovine nasal mucosa. Lang S; Langguth P; Oschmann R; Traving B; Merkle HP J Pharm Pharmacol; 1996 Nov; 48(11):1190-6. PubMed ID: 8961171 [TBL] [Abstract][Full Text] [Related]
3. Nasal epithelial permeation of thymotrinan (TP3) versus thymocartin (TP4): competitive metabolism and self-enhancement. Schmidt MC; Rubas W; Merkle HP Pharm Res; 2000 Feb; 17(2):222-8. PubMed ID: 10751039 [TBL] [Abstract][Full Text] [Related]
4. Permeation and pathways of human calcitonin (hCT) across excised bovine nasal mucosa. Lang S; Rothen-Rutishauser B; Perriard JC; Schmidt MC; Merkle HP Peptides; 1998; 19(3):599-607. PubMed ID: 9533651 [TBL] [Abstract][Full Text] [Related]
5. Comparison of human tracheal/bronchial epithelial cell culture and bovine nasal respiratory explants for nasal drug transport studies. Chemuturi NV; Hayden P; Klausner M; Donovan MD J Pharm Sci; 2005 Sep; 94(9):1976-85. PubMed ID: 16052562 [TBL] [Abstract][Full Text] [Related]
6. Transport of deslorelin, an LHRH agonist, is vectorial and exhibits regional variation in excised bovine nasal tissue. Koushik KN; Kompella UB J Pharm Pharmacol; 2004 Jul; 56(7):861-8. PubMed ID: 15233864 [TBL] [Abstract][Full Text] [Related]
7. Poly-L-arginine predominantly increases the paracellular permeability of hydrophilic macromolecules across rabbit nasal epithelium in vitro. Ohtake K; Maeno T; Ueda H; Natsume H; Morimoto Y Pharm Res; 2003 Feb; 20(2):153-60. PubMed ID: 12636152 [TBL] [Abstract][Full Text] [Related]
8. Active transport of polypeptides in rabbit nasal mucosa: possible role in the sampling of potential antigens. Cremaschi D; Rossetti C; Draghetti MT; Manzoni C; Aliverti V Pflugers Arch; 1991 Nov; 419(5):425-32. PubMed ID: 1663608 [TBL] [Abstract][Full Text] [Related]
9. Permeability of porcine nasal mucosa correlated with human nasal absorption. Wadell C; Björk E; Camber O Eur J Pharm Sci; 2003 Jan; 18(1):47-53. PubMed ID: 12554072 [TBL] [Abstract][Full Text] [Related]
11. Translocation of human calcitonin in respiratory nasal epithelium is associated with self-assembly in lipid membrane. Schmidt MC; Rothen-Rutishauser B; Rist B; Beck-Sickinger A; Wunderli-Allenspach H; Rubas W; Sadée W; Merkle HP Biochemistry; 1998 Nov; 37(47):16582-90. PubMed ID: 9843425 [TBL] [Abstract][Full Text] [Related]
12. Localization and differential activity of P-glycoprotein in the bovine olfactory and nasal respiratory mucosae. Kandimalla KK; Donovan MD Pharm Res; 2005 Jul; 22(7):1121-8. PubMed ID: 16028013 [TBL] [Abstract][Full Text] [Related]
13. Quantitative estimation of drug permeation through nasal mucosa using in vitro membrane permeability across Calu-3 cell layers for predicting in vivo bioavailability after intranasal administration to rats. Inoue D; Furubayashi T; Tanaka A; Sakane T; Sugano K Eur J Pharm Biopharm; 2020 Apr; 149():145-153. PubMed ID: 32057906 [TBL] [Abstract][Full Text] [Related]
14. Proteolysis of human calcitonin in excised bovine nasal mucosa: elucidation of the metabolic pathway by liquid secondary ionization mass spectrometry (LSIMS) and matrix assisted laser desorption ionization mass spectrometry (MALDI). Lang SR; Staudenmann W; James P; Manz HJ; Kessler R; Galli B; Moser HP; Rummelt A; Merkle HP Pharm Res; 1996 Nov; 13(11):1679-85. PubMed ID: 8956334 [TBL] [Abstract][Full Text] [Related]
15. In vitro evaluation of the potential of thiomers for the nasal administration of Leu-enkephalin. Bernkop-Schnürch A; Obermair K; Greimel A; Palmberger TF Amino Acids; 2006 Jun; 30(4):417-23. PubMed ID: 16554973 [TBL] [Abstract][Full Text] [Related]
16. In-vitro cell culture models of the nasal epithelium: a comparative histochemical investigation of their suitability for drug transport studies. Werner U; Kissel T Pharm Res; 1996 Jul; 13(7):978-88. PubMed ID: 8842033 [TBL] [Abstract][Full Text] [Related]
17. Transport characteristics of a beta sheet breaker peptide across excised bovine nasal mucosa. Greimel A; Bernkop-Schnürch A; Del Curto MD; D'Antonio M Drug Dev Ind Pharm; 2007 Jan; 33(1):71-7. PubMed ID: 17192253 [TBL] [Abstract][Full Text] [Related]
18. Role of dopamine transporter (DAT) in dopamine transport across the nasal mucosa. Chemuturi NV; Haraldsson JE; Prisinzano T; Donovan M Life Sci; 2006 Aug; 79(14):1391-8. PubMed ID: 16733058 [TBL] [Abstract][Full Text] [Related]
19. In vitro nasal transport across ovine mucosa: effects of ammonium glycyrrhizinate on electrical properties and permeability of growth hormone releasing peptide, mannitol, and lucifer yellow. Reardon PM; Gochoco CH; Audus KL; Wilson G; Smith PL Pharm Res; 1993 Apr; 10(4):553-61. PubMed ID: 8483838 [TBL] [Abstract][Full Text] [Related]
20. Permeation and systemic absorption of R- and S-baclofen across the nasal mucosa. Zhang H; Schmidt M; Murry DJ; Donovan MD J Pharm Sci; 2011 Jul; 100(7):2717-23. PubMed ID: 21283988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]