These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10707659)

  • 1. [Regulation of synaptic efficacy by neural activity in the hippocampus].
    Fukunaga K; Miyamoto E
    Tanpakushitsu Kakusan Koso; 2000 Feb; 45(3 Suppl):474-82. PubMed ID: 10707659
    [No Abstract]   [Full Text] [Related]  

  • 2. A fresh look at the role of CaMKII in hippocampal synaptic plasticity and memory.
    Rongo C
    Bioessays; 2002 Mar; 24(3):223-33. PubMed ID: 11891759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role of Ca2+/calmodulin-dependent protein kinase II in the induction of long-term potentiation in hippocampal CA1 area.
    Miyamoto E; Fukunaga K
    Neurosci Res; 1996 Jan; 24(2):117-22. PubMed ID: 8929917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Molecular mechanisms of long-term potentiation in hihhocampus].
    Miyamoto E; Fukunaga K
    Tanpakushitsu Kakusan Koso; 2004 Feb; 49(3 Suppl):391-7. PubMed ID: 14976761
    [No Abstract]   [Full Text] [Related]  

  • 5. Molecular and cellular cognitive studies of the role of synaptic plasticity in memory.
    Silva AJ
    J Neurobiol; 2003 Jan; 54(1):224-37. PubMed ID: 12486706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular basis of CaMKII function in synaptic and behavioural memory.
    Lisman J; Schulman H; Cline H
    Nat Rev Neurosci; 2002 Mar; 3(3):175-90. PubMed ID: 11994750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases.
    Nguyen PV; Woo NH
    Prog Neurobiol; 2003 Dec; 71(6):401-37. PubMed ID: 15013227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene targeting: a new approach for the analysis of mammalian memory and learning.
    Tonegawa S
    Prog Clin Biol Res; 1994; 390():5-18. PubMed ID: 7724650
    [No Abstract]   [Full Text] [Related]  

  • 9. Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity.
    Blitzer RD; Iyengar R; Landau EM
    Biol Psychiatry; 2005 Jan; 57(2):113-9. PubMed ID: 15652868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A developmental switch in the signaling cascades for LTP induction.
    Yasuda H; Barth AL; Stellwagen D; Malenka RC
    Nat Neurosci; 2003 Jan; 6(1):15-6. PubMed ID: 12469130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of PKA, CaMKII, and PKC in avoidance conditioning: permissive or instructive?
    Shobe J
    Neurobiol Learn Mem; 2002 May; 77(3):291-312. PubMed ID: 11991759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flies put the buzz back into long-term-potentiation.
    Paulsen O; Morris RG
    Nat Neurosci; 2002 Apr; 5(4):289-90. PubMed ID: 11914715
    [No Abstract]   [Full Text] [Related]  

  • 13. Roles of CaMKII, PKA, and PKC in the induction and maintenance of LTP of C-fiber-evoked field potentials in rat spinal dorsal horn.
    Yang HW; Hu XD; Zhang HM; Xin WJ; Li MT; Zhang T; Zhou LJ; Liu XG
    J Neurophysiol; 2004 Mar; 91(3):1122-33. PubMed ID: 14586032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Memory. Why is the cortex a slow learner?
    Lisman J; Morris RG
    Nature; 2001 May; 411(6835):248-9. PubMed ID: 11357109
    [No Abstract]   [Full Text] [Related]  

  • 15. [Long term potentiation of the synaptic efficacy: mechanisms, functional properties and role in learning and memory].
    Laroche S
    C R Seances Soc Biol Fil; 1994; 188(5-6):415-58. PubMed ID: 7780788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term enhancement of excitability and the regulation of glutamate receptors by protein kinases.
    MacDonald JF; Browning MD; Wang LY
    Epilepsy Res Suppl; 1996; 12():275-82. PubMed ID: 9302526
    [No Abstract]   [Full Text] [Related]  

  • 17. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II.
    Watson JB; Khorasani H; Persson A; Huang KP; Huang FL; O'Dell TJ
    J Neurosci Res; 2002 Nov; 70(3):298-308. PubMed ID: 12391589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Long-term potentiation of synaptic transmission].
    Manabe T
    Tanpakushitsu Kakusan Koso; 1998 Sep; 43(12 Suppl):1841-8. PubMed ID: 9788191
    [No Abstract]   [Full Text] [Related]  

  • 19. Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus.
    Lanté F; de Jésus Ferreira MC; Guiramand J; Récasens M; Vignes M
    Hippocampus; 2006; 16(4):345-60. PubMed ID: 16302229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties.
    Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M
    Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.