BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 10707975)

  • 1. Molecular modification of N-cadherin in response to synaptic activity.
    Tanaka H; Shan W; Phillips GR; Arndt K; Bozdagi O; Shapiro L; Huntley GW; Benson DL; Colman DR
    Neuron; 2000 Jan; 25(1):93-107. PubMed ID: 10707975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporally distinct demands for classic cadherins in synapse formation and maturation.
    Bozdagi O; Valcin M; Poskanzer K; Tanaka H; Benson DL
    Mol Cell Neurosci; 2004 Dec; 27(4):509-21. PubMed ID: 15555928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postsynaptic Y654 dephosphorylation of β-catenin modulates presynaptic vesicle turnover through increased n-cadherin-mediated transsynaptic signaling.
    Chen CY; Chen YT; Wang JY; Huang YS; Tai CY
    Dev Neurobiol; 2017 Jan; 77(1):61-74. PubMed ID: 27328456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic anchorage of AMPA receptors by cadherins through neural plakophilin-related arm protein AMPA receptor-binding protein complexes.
    Silverman JB; Restituito S; Lu W; Lee-Edwards L; Khatri L; Ziff EB
    J Neurosci; 2007 Aug; 27(32):8505-16. PubMed ID: 17687028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation.
    Bozdagi O; Shan W; Tanaka H; Benson DL; Huntley GW
    Neuron; 2000 Oct; 28(1):245-59. PubMed ID: 11086998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-cadherin redistribution during synaptogenesis in hippocampal neurons.
    Benson DL; Tanaka H
    J Neurosci; 1998 Sep; 18(17):6892-904. PubMed ID: 9712659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential control of presynaptic efficacy by postsynaptic N-cadherin and β-catenin.
    Vitureira N; Letellier M; White IJ; Goda Y
    Nat Neurosci; 2011 Dec; 15(1):81-9. PubMed ID: 22138644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones.
    Uchida N; Honjo Y; Johnson KR; Wheelock MJ; Takeichi M
    J Cell Biol; 1996 Nov; 135(3):767-79. PubMed ID: 8909549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function.
    Murase S; Mosser E; Schuman EM
    Neuron; 2002 Jul; 35(1):91-105. PubMed ID: 12123611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadherin regulates dendritic spine morphogenesis.
    Togashi H; Abe K; Mizoguchi A; Takaoka K; Chisaka O; Takeichi M
    Neuron; 2002 Jul; 35(1):77-89. PubMed ID: 12123610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of beta-catenin in synaptic vesicle localization and presynaptic assembly.
    Bamji SX; Shimazu K; Kimes N; Huelsken J; Birchmeier W; Lu B; Reichardt LF
    Neuron; 2003 Nov; 40(4):719-31. PubMed ID: 14622577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delayed postnatal development of NMDA receptor function in medium-sized neurons of the rat striatum.
    Hurst RS; Cepeda C; Shumate LW; Levine MS
    Dev Neurosci; 2001; 23(2):122-34. PubMed ID: 11509835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadherin activity is required for activity-induced spine remodeling.
    Okamura K; Tanaka H; Yagita Y; Saeki Y; Taguchi A; Hiraoka Y; Zeng LH; Colman DR; Miki N
    J Cell Biol; 2004 Dec; 167(5):961-72. PubMed ID: 15569714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RICS, a novel GTPase-activating protein for Cdc42 and Rac1, is involved in the beta-catenin-N-cadherin and N-methyl-D-aspartate receptor signaling.
    Okabe T; Nakamura T; Nishimura YN; Kohu K; Ohwada S; Morishita Y; Akiyama T
    J Biol Chem; 2003 Mar; 278(11):9920-7. PubMed ID: 12531901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postsynaptic modulation of AMPA receptor-mediated synaptic responses and LTP by the type 3 ryanodine receptor.
    Shimuta M; Yoshikawa M; Fukaya M; Watanabe M; Takeshima H; Manabe T
    Mol Cell Neurosci; 2001 May; 17(5):921-30. PubMed ID: 11358488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses.
    Dunah AW; Hueske E; Wyszynski M; Hoogenraad CC; Jaworski J; Pak DT; Simonetta A; Liu G; Sheng M
    Nat Neurosci; 2005 Apr; 8(4):458-67. PubMed ID: 15750591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of excitatory synapses in cultured neurons dissociated from the cortices of rat embryos and rat pups at birth.
    Lin YC; Huang ZH; Jan IS; Yeh CC; Wu HJ; Chou YC; Chang YC
    J Neurosci Res; 2002 Feb; 67(4):484-93. PubMed ID: 11835315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coincidence in dendritic clustering and synaptic targeting of homer proteins and NMDA receptor complex proteins NR2B and PSD95 during development of cultured hippocampal neurons.
    Shiraishi Y; Mizutani A; Mikoshiba K; Furuichi T
    Mol Cell Neurosci; 2003 Feb; 22(2):188-201. PubMed ID: 12676529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linkage of N-cadherin to multiple cytoskeletal elements revealed by a proteomic approach in hippocampal neurons.
    Tanaka H; Takafuji K; Taguchi A; Wiriyasermkul P; Ohgaki R; Nagamori S; Suh PG; Kanai Y
    Neurochem Int; 2012 Jul; 61(2):240-50. PubMed ID: 22609377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-derived neurotrophic factor rapidly potentiates synaptic transmission through NMDA, but suppresses it through non-NMDA receptors in rat hippocampal neuron.
    Song DK; Choe B; Bae JH; Park WK; Han IS; Ho WK; Earm YE
    Brain Res; 1998 Jul; 799(1):176-9. PubMed ID: 9666119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.